3D statistical shape models for automatic segmentation of the fetal cerebellum in ultrasound images

被引:0
|
作者
Velasquez-Rodriguez, Gustavo A. R. [1 ]
Fanti-Gutierrez, Zian [2 ]
Torres, Fabian [3 ]
Medina-Banuelos, Veronica [4 ]
Escalante-Ramirez, Boris [5 ]
Marin, Lisbeth Camargo [6 ]
Huerta, Mario Guzman [6 ]
Cosio, Fernando Arambula [7 ]
机构
[1] Univ Nacl Autonoma Mexico, Postgrad Program Elect Engn, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Ciudad Univ, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad Univ, Mexico City 04510, Mexico
[6] Natl Inst Perinatol, Dept Translat Med, Mexico City 11000, Mexico
[7] Univ Nacl Autonoma Mexico, Unidad Acad IIMAS Yucatan, Inst Invest Matemat Aplicadas & Sistemas IIMAS, Merida 97205, Yucatan, Mexico
关键词
3D segmentation of the cerebellum; Spherical harmonics; Point distribution models; CLASSIFICATION;
D O I
10.1007/s11760-024-03615-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cerebellum is an important structure to determine fetal development because its volume has a high correlation with gestational age. Manual annotation of the cerebellum in 3D ultrasound images (to measure the cerebellar volume) requires highly trained experts to perform a time-consuming task. To assist in this task, we developed a totally automatic system for the 3D segmentation of the cerebellum in ultrasound images of the fetal brain, using a 3D Point Distribution Model (PDM) obtained from another statistical shape model based on a spherical harmonics (SPHARMs) representation, which provides a very efficient basis for the construction of statistical shape models of 3D organs with a spherical topology. Our PDM of the fetal cerebellum was automatically adjusted with the optimization of an objective function based on gray level voxel profiles, using a genetic algorithm. An automatic initialization and plane selection scheme was also developed, based on the detection of the cerebellum on each plane by a convolutional neural network (YOLO v2). Our results of the 3D segmentation of 18 ultrasound volumes of the fetal brain are: Dice coefficient of 0.83 +/- 0.10 and Hausdorff distance of 3.61 +/- 0.83 mm. The methods reported show potential to successfully assist the experts in the assessment of fetal growth in ultrasound volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images
    Scherzinger, Aaron
    Kleene, Florian
    Dierkes, Cathrin
    Kiefer, Friedemann
    Hinrichs, Klaus H.
    Jiang, Xiaoyi
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 105 - 116
  • [22] Automatic superpixel-based segmentation method for breast ultrasound images
    Daoud, Mohammad I.
    Atallah, Ayman A.
    Awwad, Falah
    Al-Najjar, Mahasen
    Alazrai, Rami
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 (78-96) : 78 - 96
  • [23] Automatic 3D pulmonary nodule detection in CT images: A survey
    Valente, Igor Rafael S.
    Cortez, Paulo Cesar
    Cavalcanti Neto, Edson
    Soares, Jose Marques
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 124 : 91 - 107
  • [24] Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer
    Wang, Yuxin
    Gu, Peng
    Lee, Won-Mean
    Roubidoux, Marilyn A.
    Du, Sidan
    Yuan, Jie
    Wang, Xueding
    Carson, Paul L.
    MEDICAL IMAGING 2016: ULTRASONIC IMAGING AND TOMOGRAPHY, 2016, 9790
  • [25] 3D ultrasound image segmentation using wavelet support vector machines
    Akbari, Hamed
    Fei, Baowei
    MEDICAL PHYSICS, 2012, 39 (06) : 2972 - 2984
  • [26] SEMANTIC ORGAN SEGMENTATION IN 3D WHOLE-BODY MR IMAGES
    Kuestner, Thomas
    Mueller, Sarah
    Fischer, Marc
    Weiss, Jakob
    Nikolaou, Konstantin
    Bamberg, Fabian
    Yang, Bin
    Schick, Fritz
    Gatidis, Sergios
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3498 - 3502
  • [27] A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images
    Tang, Sheng
    Chen, Si-ping
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2009, 10 (09): : 648 - 658
  • [28] Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images
    Ke, Liangru
    Deng, Yishu
    Xia, Weixiong
    Qiang, Mengyun
    Chen, Xi
    Liu, Kuiyuan
    Jing, Bingzhong
    He, Caisheng
    Xie, Chuanmiao
    Guo, Xiang
    Lv, Xing
    Li, Chaofeng
    ORAL ONCOLOGY, 2020, 110
  • [29] Automatic Segmentation of Kidney and Renal Tumor in CT Images Based on 3D Fully Convolutional Neural Network with Pyramid Pooling Module
    Yang, Guanyu
    Li, Guoqing
    Pan, Tan
    Kong, Youyong
    Wu, Jiasong
    Shu, Huazhong
    Luo, Limin
    Dillenseger, Jean-Louis
    Coatrieux, Jean-Louis
    Tang, Lijun
    Zhu, Xiaomei
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3790 - 3795
  • [30] Computer-aided Classification of Liver Tumors in 3D Ultrasound Images with Combined Deformable Model Segmentation and Support Vector Machine
    Lee, Myungeun
    Kim, Jong Hyo
    Park, Moon Ho
    Kim, Ye-Hoon
    Seong, Yeong Kyeong
    Cho, Baek Hwan
    Woo, Kyoung-Gu
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034