Joint VNF Deployment and Information Synchronization in Digital Twin Driven Network Slicing via Deep Reinforcement Learning

被引:0
|
作者
Tang, Lun [1 ,2 ]
Wang, Lejia [1 ,2 ]
Zhang, Hongpeng [1 ,2 ]
Du, Yucong [1 ,2 ]
Fang, Dongxu [3 ]
Chen, Qianbin [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Key Lab Mobile Commun Technol, Chongqing 400065, Peoples R China
[3] China Mobile Grp Chongqing Co Ltd, Chongqing 401121, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Prediction algorithms; Real-time systems; Optimization; Delays; Network slicing; Digital twins; digital twin; virtual network function; information synchronization; joint VNF deployment; PLACEMENT;
D O I
10.1109/TVT.2024.3415740
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Network slicing (NS) provides customized services for Internet of Vehicles (IoV) users by creating logical virtual networks. Digital Twin Network (DTN) enables IoV network monitoring and low-cost policy validation. However, it needs to consider reducing the delay in transmitting synchronization information from the physical layer to the digital twin layer. Therefore, this paper proposes a method based on Digital Twin Driven Network Slicing (DTDNS) for Virtual Network Function (VNF) deployment and network information synchronization. Firstly, we abstract the data collection function of DTDNS as an information synchronization VNF, deploy it jointly with service VNFs, and propose a VNFs joint deployment model and an information synchronization model. Secondly, we introduce an optimization problem to maximize service and information synchronization utility, which consists of a deployment subproblem and an information synchronization subproblem. Additionally, we introduce a distributed VNF deployment and information synchronization algorithm to address these issues. Simulation results demonstrate that our proposed algorithm can reduce information synchronization delay and node deployment costs. Furthermore, the distributed VNF deployment and information synchronization algorithm can enhance algorithm convergence speed and reduce training time.
引用
收藏
页码:16663 / 16679
页数:17
相关论文
共 50 条
  • [1] Joint Virtual Network Function Deployment and Scheduling via Heuristics and Deep Reinforcement Learning
    Zhang, Zixiao
    Oki, Eiji
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (12) : 1424 - 1440
  • [2] Network Slicing via Transfer Learning aided Distributed Deep Reinforcement Learning
    Hu, Tianlun
    Liao, Qi
    Liu, Qiang
    Carle, Georg
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2909 - 2914
  • [3] Digital Twin-Enhanced Deep Reinforcement Learning for Resource Management in Networks Slicing
    Zhang, Zhengming
    Huang, Yongming
    Zhang, Cheng
    Zheng, Qingbi
    Yang, Luxi
    You, Xiaohu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (10) : 6209 - 6224
  • [4] Deterministic Delay of Digital-Twin-Assisted End-to-End Network Slicing in Industrial IoT via Multiagent Deep Reinforcement Learning
    Tang, Lun
    Pu, Zhoulin
    Hou, Qiang
    Fang, Dongxu
    Chen, Qianbin
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 1064 - 1080
  • [5] VNF Placement over Autonomic Elastic Optical Network via Deep Reinforcement Learning
    Hernandez-Chulde, Carlos
    Casellas, Ramon
    Martinez, Ricardo
    Vilalta, Ricard
    Munoz, Raul
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 422 - 427
  • [6] Digital-Twin-Assisted Resource Allocation for Network Slicing in Industry 4.0 and Beyond Using Distributed Deep Reinforcement Learning
    Tang, Lun
    Du, Yucong
    Liu, Qinghai
    Li, Jinyu
    Li, Shirui
    Chen, Qianbin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (19) : 16989 - 17006
  • [7] Automated Deployment of Virtual Network Function in 5G Network Slicing Using Deep Reinforcement Learning
    Othman, Anuar
    Nayan, Nazrul A.
    Abdullah, Siti N. H. S.
    IEEE ACCESS, 2022, 10 : 61065 - 61079
  • [8] When Network Slicing meets Deep Reinforcement Learning
    Liu, Qiang
    Han, Tao
    CONEXT'19 COMPANION: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES, 2019, : 29 - 30
  • [9] Dynamic Network Slicing using Deep Reinforcement Learning
    Kumar, Swaraj
    Vankayala, Satya Kumar
    Singh, Devashish
    Roy, Ishaan
    Sahoo, Biswa P. S.
    Yoon, Seungil
    Kanakaraj, Ignatius Samuel
    2021 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2021,
  • [10] Deep Reinforcement Learning for Resource Management in Network Slicing
    Li, Rongpeng
    Zhao, Zhifeng
    Sun, Qi
    I, Chih-Lin
    Yang, Chenyang
    Chen, Xianfu
    Zhao, Minjian
    Zhang, Honggang
    IEEE ACCESS, 2018, 6 : 74429 - 74441