Efficient activation of persulfate by copper-coated nano zero-valent iron for degradation of nitrogenous disinfection by-products: The key role of Cu

被引:0
|
作者
Pei, Yanyan [1 ]
Liu, Renyu [1 ]
Chen, Junlan [1 ]
Chen, Yewei [2 ]
Chen, Jinfeng [1 ]
Jiang, Zhuwu [1 ]
机构
[1] Fujian Univ Technol, Coll Ecol Environm & Urban Construct, Fuzhou 350118, Fujian, Peoples R China
[2] China Construct Fourth Engn Bur Construct Dev Co L, Xiamen 361006, Peoples R China
基金
中国国家自然科学基金;
关键词
Nano zero-valent iron (nZVI); Persulfate (PS); Advanced oxidation; Density functional theory (DFT); WASTE-WATER TREATMENT; REMOVAL; OXIDATION; NITROSAMINES; INSIGHTS; ACID;
D O I
10.1016/j.jcis.2025.01.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation. Compared with plain nZVI, the constructed Cu-nZVI/PS system significantly increased the removal efficiency for NPYR from 76.3 % to 94.3 % at a pH of 7.0. The Cu-nZVI composites achieved a synergetic effect on the degradation of NPYR by regulating PS activation and reactive oxygen species (ROS) formation, promoting Fe2+/Fe3+ cycling with the Cu-nZVI surface and accelerating the electron transport capacity. The bursting tests and electron paramagnetic resonance (EPR) tests confirmed that multiple types of ROS coexisted in the Cu-nZVI/PS system. Furthermore, vulnerable sites and degradation pathways on the NPYR molecule were predicted by density functional theory (DFT) calculations. Toxicity predictions revealed decreased biotoxicity of NPYR and its intermediates. The NPYR removal efficiency decreased slightly to 81.1 % after 30 days of ageing, which demonstrates the excellent potential of the composites for realistic applications.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 50 条
  • [1] Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: influencing factors, degradation pathways and toxicity analysis
    Gao, Yu-qiong
    Zhang, Jia
    Zhou, Jin-qiang
    Li, Cong
    Gao, Nai-yun
    Yin, Da-qiang
    RSC ADVANCES, 2020, 10 (35) : 20991 - 20999
  • [2] Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater
    Huang, Junyi
    Yi, Shuping
    Zheng, Chunmiao
    Lo, Irene M. C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 684 : 351 - 359
  • [3] Efficient degradation of naproxen by persulfate activated with zero-valent iron: performance, kinetic and degradation pathways
    Dong, Shuyu
    Zhai, Xiaoxue
    Pi, Ruobing
    Wei, Jinbao
    Wang, Yunpeng
    Sun, Xuhui
    WATER SCIENCE AND TECHNOLOGY, 2020, 81 (10) : 2078 - 2091
  • [4] Boron-doped biochar-nano loaded zero-valent iron to activate persulfate for the degradation of oxytetracycline
    Zhang, Haonan
    Cao, Qing
    Zhang, Kaipeng
    Xie, Linkun
    Xu, Kaimeng
    Qin, Yongjian
    Zhang, Lianpeng
    Chai, Xijuan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [5] Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron (nZVI) for the propranolol degradation in water
    Gao, Yu-qiong
    Gao, Nai-yun
    Wang, Wei
    Kang, Shi-fei
    Xu, Jian-hong
    Xiang, Hui-ming
    Yin, Da-qiang
    ULTRASONICS SONOCHEMISTRY, 2018, 49 : 33 - 40
  • [6] Efficient degradation of Congo red by persulfate activated with different particle sizes of zero-valent copper: performance and mechanism
    Ni, Xi
    Li, Qiang
    Yang, Kun
    Deng, Huiyuan
    Xia, Dongsheng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (27) : 70054 - 70064
  • [7] Persulfate activation by nanoscale zero-valent iron supported by modified blast furnace slag for degradation of phenol wastewater
    Zhang, Bo
    Zhang, Shiwei
    Zhu, Bohong
    Shen, Weili
    She, Renjie
    ENVIRONMENTAL RESEARCH, 2024, 260
  • [8] Efficient degradation of phenanthrene by biochar-supported nano zero-valent iron activated persulfate: performance evaluation and mechanism insights
    Zhou, Lai
    Wang, Yichen
    Li, Danqiong
    Zhang, Jiehui
    Zhu, Xueqiang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (60) : 125731 - 125740
  • [9] Removal of norfloxacin by combining persulfate with nano zero-valent iron modified by activated carbon and copper nanocomposite
    Zhang, Jiawei
    Chen, Yong
    Liang, Jingzhuo
    Xu, Hui
    ENVIRONMENTAL ENGINEERING RESEARCH, 2023, 28 (05)
  • [10] Efficient degradation of nizatidine by a Fe(II)/ persulfate system activated with zero-valent iron
    Lin, Yingzi
    Zhang, Qingyu
    Lou, Yi
    Liu, Gen
    Li, Siwen
    Chen, Lei
    Yuan, Baoling
    Zou, Deqiang
    Chen, Junjie
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 193 : 447 - 459