Investigation of oxygen transport in porous transport layer with different porosity gradient configurations using phase field method

被引:3
作者
Zhao, Shengyong [1 ,2 ]
Li, Peng [1 ,2 ]
Huang, Siyuan [2 ]
Yan, Yingshuang [1 ,2 ]
Liu, Zilong [1 ,2 ]
Duan, Zhengpeng [2 ]
Cai, Lanlan [1 ,2 ]
机构
[1] Wuhan Univ Technol, Coll Electromech Engn, Wuhan 430070, Hubei, Peoples R China
[2] Foshan Xianhu Lab, Ctr Guangdong Prov Lab Adv Energy Sci & Technol, Foshan Branch, Foshan 528200, Peoples R China
关键词
Phase field method; PEM electrolyzer; Porous transport layer; Two-phase flow; 2-PHASE FLOW; PORE-SCALE; MEMBRANE; ELECTROLYZER; PERFORMANCE; DYNAMICS; PTL;
D O I
10.1016/j.ijhydene.2024.11.260
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Minimizing oxygen accumulation in the porous transport layer (PTL) is crucial for reducing mass transfer losses in proton exchange membrane (PEM) electrolyzer. This study develops a two-dimensional transient model of gasliquid two-phase flow at the anode of PEM electrolyzer using the phase field method. The model investigates the mechanisms of oxygen transport and the interactions among various oxygen paths in PEM electrolyzer. We explore the impact of porosity gradient configurations in the PTL and the presence of a surface microporous layer (MPL) on oxygen transport. The findings indicate that for PTL with an average porosity of 60%, forward gradient configuration-where porosity increases from the catalyst layer (CL) towards the channel (CH)-promotes the merging of bubble sites and path contraction, thereby reducing oxygen saturation. The optimal gradient configuration, with porosities of 50% at the CL and 70% at the CH, achieves a 29.5% reduction in oxygen saturation. Conversely, reverse gradient configuration, with decreasing porosity from CL to CH, results in increased oxygen saturation. The addition of surface MPL further lowers oxygen saturation and shortens oxygen breakthrough time; smaller MPL particle sizes correspond to lower oxygen saturation and shorter breakthrough times. This study provides valuable insights for the optimal design of PTL structures in PEM electrolyzers.
引用
收藏
页码:1087 / 1100
页数:14
相关论文
共 55 条
[11]   Two-dimensional pore-scale investigation of liquid water evolution in the cathode of proton exchange membrane fuel cells [J].
Fang, Wen-Zhen ;
Li, Jin ;
Tao, Wen-Quan .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2020, 79 (04) :261-277
[12]   1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell [J].
Ferreira, Rui B. ;
Falcao, D. S. ;
Oliveira, V. B. ;
Pinto, A. M. F. R. .
APPLIED ENERGY, 2017, 203 :474-495
[13]   A study on the effect of microspheres on the freeze-thaw resistance of EPS concrete [J].
He, Haijie ;
Gao, Lidan ;
Xu, Ke ;
Yuan, Ji ;
Ge, Wei ;
Lin, Caiyuan ;
He, Chuang ;
Wang, Xiaogang ;
Liu, Junding ;
Yang, Jie .
SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2024, 31 (01)
[14]   Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers [J].
Kang, Zhenye ;
Yu, Shule ;
Yang, Gaoqiang ;
Li, Yifan ;
Bender, Guido ;
Pivovar, Bryan S. ;
Green, Johney B., Jr. ;
Zhang, Feng-Yuan .
ELECTROCHIMICA ACTA, 2019, 316 :43-51
[15]   Hydrogen in energy transition: A review [J].
Kovac, Ankica ;
Paranos, Matej ;
Marcius, Doria .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (16) :10016-10035
[16]   The effect of inlet velocity of water on the two-phase flow regime in the porous transport layer of polymer electrolyte membrane electrolyzer [J].
Larimi, S. Z. Hoseini ;
Ramiar, A. ;
Esmaili, Q. ;
Shafaghat, R. .
HEAT AND MASS TRANSFER, 2019, 55 (07) :1863-1870
[17]  
Lee CH, 2016, PROCEEDINGS OF THE ASME 14TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2016
[18]   Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers [J].
Lee, ChungHyuk ;
Hinebaugh, James ;
Banerjee, Rupak ;
Chevalier, Stephane ;
Abouatallah, Rami ;
Wang, Rainey ;
Bazylak, Aimy .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (05) :2724-2735
[19]   Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers [J].
Lee, J. K. ;
Lee, Ch. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2019, 437
[20]   Titanium porous-transport layers for PEM water electrolysis prepared by tape casting [J].
Lee, Jason K. ;
Lau, Grace Y. ;
Sabharwal, Mayank ;
Weber, Adam Z. ;
Peng, Xiong ;
Tucker, Michael C. .
JOURNAL OF POWER SOURCES, 2023, 559