Investigation of oxygen transport in porous transport layer with different porosity gradient configurations using phase field method

被引:3
作者
Zhao, Shengyong [1 ,2 ]
Li, Peng [1 ,2 ]
Huang, Siyuan [2 ]
Yan, Yingshuang [1 ,2 ]
Liu, Zilong [1 ,2 ]
Duan, Zhengpeng [2 ]
Cai, Lanlan [1 ,2 ]
机构
[1] Wuhan Univ Technol, Coll Electromech Engn, Wuhan 430070, Hubei, Peoples R China
[2] Foshan Xianhu Lab, Ctr Guangdong Prov Lab Adv Energy Sci & Technol, Foshan Branch, Foshan 528200, Peoples R China
关键词
Phase field method; PEM electrolyzer; Porous transport layer; Two-phase flow; 2-PHASE FLOW; PORE-SCALE; MEMBRANE; ELECTROLYZER; PERFORMANCE; DYNAMICS; PTL;
D O I
10.1016/j.ijhydene.2024.11.260
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Minimizing oxygen accumulation in the porous transport layer (PTL) is crucial for reducing mass transfer losses in proton exchange membrane (PEM) electrolyzer. This study develops a two-dimensional transient model of gasliquid two-phase flow at the anode of PEM electrolyzer using the phase field method. The model investigates the mechanisms of oxygen transport and the interactions among various oxygen paths in PEM electrolyzer. We explore the impact of porosity gradient configurations in the PTL and the presence of a surface microporous layer (MPL) on oxygen transport. The findings indicate that for PTL with an average porosity of 60%, forward gradient configuration-where porosity increases from the catalyst layer (CL) towards the channel (CH)-promotes the merging of bubble sites and path contraction, thereby reducing oxygen saturation. The optimal gradient configuration, with porosities of 50% at the CL and 70% at the CH, achieves a 29.5% reduction in oxygen saturation. Conversely, reverse gradient configuration, with decreasing porosity from CL to CH, results in increased oxygen saturation. The addition of surface MPL further lowers oxygen saturation and shortens oxygen breakthrough time; smaller MPL particle sizes correspond to lower oxygen saturation and shorter breakthrough times. This study provides valuable insights for the optimal design of PTL structures in PEM electrolyzers.
引用
收藏
页码:1087 / 1100
页数:14
相关论文
共 55 条
[1]   Steady-StateWater Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study [J].
Altaf, Haashir ;
Vorhauer, Nicole ;
Tsotsas, Evangelos ;
Vidakovic-Koch, Tanja .
PROCESSES, 2020, 8 (03)
[2]  
Amoury Bilal, 2023, ECS Transactions, P167, DOI 10.1149/11204.0167ecst
[3]   Three-Dimensional Computational Fluid Dynamics Modelling of Oxygen Bubble Transport in Polymer Electrolyte Membrane Electrolyzer Porous Transport Layers [J].
Arbabi, F. ;
Montazeri, H. ;
Abouatallah, R. ;
Wang, R. ;
Bazylak, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3062-F3069
[4]   Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers [J].
Arbabi, F. ;
Kalantarian, A. ;
Abouatallah, R. ;
Wang, R. ;
Wallace, J. S. ;
Bazylak, A. .
JOURNAL OF POWER SOURCES, 2014, 258 :142-149
[5]   Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation [J].
Bai, Feng ;
He, Xiaoming ;
Yang, Xiaofeng ;
Zhou, Ran ;
Wang, Cheng .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2017, 93 :130-141
[6]   LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer [J].
Bhaskaran, Supriya ;
Pandey, Divyansh ;
Surasani, Vikranth Kumar ;
Tsotsas, Evangelos ;
Vidakovic-Koch, Tanja ;
Vorhauer-Huget, Nicole .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (74) :31551-31565
[7]   Cahn-Hilliard/Navier-Stokes Model for the Simulation of Three-Phase Flows [J].
Boyer, F. ;
Lapuerta, C. ;
Minjeaud, S. ;
Piar, B. ;
Quintard, M. .
TRANSPORT IN POROUS MEDIA, 2010, 82 (03) :463-483
[8]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[9]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[10]   Porous Transport Layers with TiC-Coated Microporous Layers for Proton Exchange Membrane Water Electrolysis [J].
Deng, Tong ;
Huang, Henghui ;
Fan, Li ;
Xu, Shaoyi ;
Li, Hui .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) :17075-17085