Dynamic graph spatial-Temporal dependence information extraction for remaining useful life prediction of rolling bearings

被引:0
|
作者
Sun, Sichao [1 ]
Xia, Xinyu [1 ]
Yang, Jiale [1 ]
Zhou, Hua [1 ]
机构
[1] State Key Laboratory of Fluid Power Components and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
来源
关键词
Compendex;
D O I
10.3233/JIFS-241008
中图分类号
学科分类号
摘要
Convolutional neural networks - Graph neural networks - Roller bearings
引用
收藏
页码:293 / 305
相关论文
共 50 条
  • [1] Remaining useful life prediction for rotating machinery based on dynamic graph and spatial-temporal network
    Zeng, Xiangyu
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Di
    Wei, Shangwan
    Liu, Yujie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [2] Spatial-Temporal Evolutionary Graph Attention Network for Bearing Remaining Useful Life Prediction
    Du, Sirui
    Dong, Feng
    Zhang, Shumei
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1329 - 1334
  • [3] Knowledge embedded spatial-temporal graph convolutional networks for remaining useful life prediction
    Cai, Xiao
    Zhang, Dingcheng
    Yu, Yang
    Xie, Min
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 259
  • [4] Spatial-Temporal Feature Extraction Network for Online Aeroengines Remaining Useful Life Prediction
    Zhu, Ting
    Chen, Zhen
    Zhou, Di
    Xia, Tangbin
    Pan, Ershun
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 41731 - 41739
  • [5] Dynamic spatial-temporal graph-driven machine remaining useful life prediction method using graph data augmentation
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Xinyu
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (01) : 355 - 366
  • [6] Spatial-Temporal Attention and Information Reinforcement Network for Machine Remaining Useful Life Prediction
    Li, Xuanlin
    Hu, Yawei
    Wang, Hang
    Liu, Yongbin
    Liu, Xianzeng
    Cao, Zheng
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 4068 - 4078
  • [7] Remaining useful life prediction of rolling bearings based on parallel feature extraction
    Li, Chao
    Zhai, Weimin
    Fu, Weiming
    Qin, Jiahu
    Kang, Yu
    ROBOTIC INTELLIGENCE AND AUTOMATION, 2025, 45 (01): : 90 - 105
  • [8] On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor
    Bienefeld, Christoph
    Kirchner, Eckhard
    Vogt, Andreas
    Kacmar, Marian
    LUBRICANTS, 2022, 10 (04)
  • [9] Bearing remaining useful life prediction using spatial-temporal multiscale graph convolutional neural network
    Yang, Xiaoyu
    Li, Xinye
    Zheng, Ying
    Zhang, Yong
    Wong, David Shan-Hill
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (08)
  • [10] A Novel Competitive Temporal Convolutional Network for Remaining Useful Life Prediction of Rolling Bearings
    Wang, Wei
    Zhou, Gongbo
    Ma, Guoqing
    Yan, Xiaodong
    Zhou, Ping
    He, Zhenzhi
    Ma, Tianbing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72