Diatomite porous ceramic-based phase change materials with Ti3C2Tx coating for efficient solar-thermal energy conversion

被引:0
作者
Liu, Xianjie [1 ]
Lin, Fankai [1 ]
Guo, Zijiao [1 ]
Liu, Mingyong [1 ]
Jiang, Yuena [1 ]
Qiao, Jiaxin [1 ]
Mi, Ruiyu [1 ]
Min, Xin [1 ]
Huang, Zhaohui [1 ]
机构
[1] China Univ Geosci, Engn Res Ctr Minist Educ Geol Carbon Storage & Low, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Diatomite porous ceramics; Shape stable phase change materials; Ti(3)C(2)Tx coating; Thermal energy storage; Solar-thermal conversion; PHOTOTHERMAL CONVERSION; COMPOSITE; PERFORMANCE; PARAFFIN;
D O I
10.1016/j.est.2024.114967
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Based on the thermal energy storage and solar-thermal conversion of solid-liquid phase change materials (PCMs), they feature exceptional potential for energy-saving thermal insulation and solar energy utilization in buildings. However, the inherent low thermal conductivity, susceptibility to leakage and poor solar absorption of PCMs seriously restrict their practical applications. In this work, composite PCMs were fabricated by encapsulating paraffin with diatomite porous ceramics (DC) featuring hierarchical pore structures prepared by foaming and freeze-drying. Excellent sunlight absorption and solar-thermal conversion were achieved by spraying a Ti3C2Tx coating on the DC-paraffin surface. The as-prepared DC3-PA with 55.85 % loading on paraffin possessed a satisfactory thermal storage capacity of 112.1 J/g, maintained excellent stability, and improved the thermal conductivity by 107.25 %. The solar-thermal conversion and storage efficiency of DC3/T-PA is as high as 95.24 % under 200 mW/cm2 light intensity attributed to the large broad-band solar absorption and strong localized surface plasmon resonance (LSPR) effect of the Ti3C2Tx coating. This strategy combining hierarchical porous structured ceramic encapsulation and Ti3C2Tx coating surface modification was employed for obtaining highperformance shape-stable composite PCMs, which was expected to achieve potential applications in building energy efficiency, solar energy utilization, and thermal management.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Biomass-Based Shape-Stabilized Composite Phase-Change Materials with High Solar-Thermal Conversion Efficiency for Thermal Energy Storage
    Gao, Ning
    Du, Jiaoli
    Yang, Wenbo
    Li, Youbing
    Chen, Ning
    POLYMERS, 2023, 15 (18)
  • [12] Design of three-dimensional interconnected porous hydroxyapatite ceramic-based composite phase change materials for thermal energy storage
    Wu, Yifan
    Yang, Zhiwei
    Wu, Niuniu
    Zhao, Siyi
    Li, Jinhong
    Li, Yali
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11930 - 11940
  • [13] Enhanced thermal conductivity of wood-based phase change materials with copper for thermal management and solar-thermal conversion
    Liu, Chen
    Li, Jing
    Bai, Kaiwen
    Lv, Shanshan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 704
  • [14] Double-skeleton based shape-stabilized phase change materials with excellent solar-thermal energy conversion and shape memory performance
    Liu, Zhipeng
    He, Fangfang
    Yang, Aoshuang
    Su, Li
    Li, Yongsheng
    Jiang, Shubin
    Chen, Zhengguo
    Yang, Wenbin
    THERMOCHIMICA ACTA, 2022, 717
  • [15] Anisotropy-functionalized cellulose-based phase change materials with reinforced solar-thermal energy conversion and storage capacity
    Li, Yaqiong
    Chen, Yiming
    Huang, Xiubing
    Jiang, Shaohua
    Wang, Ge
    CHEMICAL ENGINEERING JOURNAL, 2021, 415
  • [16] Highly graphitized carbon foam to construct phase change materials composites for multiple solar-thermal energy conversion
    Ahangar, Ali Mohseni
    Rahmani, Arya
    Maleki, Mahdi
    Ahmadi, Rouhollah
    Razavi, Seyed Hossein
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 277
  • [17] Dopamine-Decorated Ti3C2Tx MXene/Cellulose Nanofiber Aerogels Supported Form-Stable Phase Change Composites with Superior Solar-Thermal Conversion Efficiency and Extremely High Thermal Storage Density
    Du, Xiaosheng
    Wang, Jiuao
    Jin, Linzhao
    Deng, Sha
    Dong, Yi
    Lin, Shaojian
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) : 15225 - 15234
  • [18] Anisotropic hemp-stem-derived biochar supported phase change materials with efficient solar-thermal energy conversion and storage
    Ruiying Yang
    Xiran Guo
    Haotian Wu
    Weizhi Kang
    Kun Song
    Yaqiong Li
    Xiubing Huang
    Ge Wang
    Biochar, 2022, 4
  • [19] Nickel foam/Covalent-Organic Frameworks for composite phase change materials with enhanced solar-thermal energy conversion and storage capacity
    Yang, Ruiying
    Zheng, Nannan
    Yu, Zongxing
    Zhang, Fengyuan
    Gai, Heming
    Chen, Jikun
    Huang, Xiubing
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [20] Hierarchical magnetic porous carbonized wood composite phase change materials for efficient solar-thermal, electrothermal, and magnetothermal conversion-storage
    Shuaib, Suhaib Shuaib Adam
    Yuan, Weizhong
    MATERIALS TODAY COMMUNICATIONS, 2023, 37