Generalizable MRI Motion Correction via Compressed Sensing Equivariant Imaging Prior

被引:3
作者
Wang, Zhiwen [1 ]
Ran, Maosong [1 ]
Yang, Ziyuan [1 ]
Yu, Hui [1 ]
Jing, Jie [1 ]
Wang, Tao [1 ]
Lu, Jingfeng [2 ,3 ]
Zhang, Yi [2 ,3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Sch Cyber Sci & Engn, Chengdu 610065, Peoples R China
[3] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Task analysis; Image reconstruction; Compressed sensing; Training; Three-dimensional displays; Encoding; MRI; motion artifact; compressed sensing; generalizable motion correction; ARTIFACTS; NETWORK;
D O I
10.1109/TCSVT.2024.3432751
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing deep learning (DL)-based magnetic resonance imaging (MRI) retrospective motion correction (MoCo) models are typically task-specific, which makes them challenging to generalize to different scenarios w.r.t motions, modalities, planes, and scanner centers. This limitation occurs since the motions of each patient vary, and collecting diverse paired/unpaired motion data is generally costly and infeasible. To deal with this problem, we propose the Equivariant Imaging Prior (EIP) framework to generalize the MoCo tasks toward various scenarios.In this paper, the traditional MRI MoCo tasks, specifically for the multi-scenarios, can be treated as a mask-varying compressed sensing self-supervised problem for MRI reconstruction with corrupted k-space data.To the best of our knowledge, this framework is the first attempt to handle multiple MRI MoCo scenarios with one single DL model. Specifically, stochastic subsampling and modality augmentation are employed for data preparation. Then, a domain generalization-friendly net is carefully designed and an equivariant imaging task is leveraged to learn the mapping from corrupted data to clean images. The experimental results show that the proposed EIP framework achieves impressive adaptability across generalizable MoCo tasks, including but not limited to multi-motion, multi-modality, multi-center, and multi-plane. Furthermore, our EIP demonstrates similar or superior performance to several state-of-the-art models trained in a supervised manner, extending to even motion estimation on the multi-coil raw data. The code is available: https://github.com/wangzhiwen-scu/EIP4MoCo.
引用
收藏
页码:12550 / 12567
页数:18
相关论文
共 72 条
[1]   Compensation for respiratory motion-induced signal loss and phase corruption in free-breathing self-navigated cine DENSE using deep learning [J].
Abdi, Mohamad ;
Bilchick, Kenneth C. ;
Epstein, Frederick H. .
MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (05) :1975-1989
[2]   Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI [J].
Al-masni, Mohammed A. ;
Lee, Seul ;
Yi, Jaeuk ;
Kim, Sewook ;
Gho, Sung-Min ;
Choi, Young Hun ;
Kim, Dong-Hyun .
NEUROIMAGE, 2022, 259
[3]   Unsupervised Medical Image Translation Using Cycle-MedGAN [J].
Armanious, Karim ;
Jiang, Chenming ;
Abdulatif, Sherif ;
Kuestner, Thomas ;
Gatidis, Sergios ;
Yang, Bin .
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
[4]   Sharpness in motion corrected quantitative imaging at 7T [J].
Bazin, Pierre-Louis ;
Nijsse, Hannah E. ;
van der Zwaag, Wietske ;
Gallichan, Daniel ;
Alkemade, Anneke ;
Vos, Frans M. ;
Forstmann, Birte U. ;
Caan, Matthan W. A. .
NEUROIMAGE, 2020, 222
[5]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[6]   Multiple Overlapping k-Space Junctions for Investigating Translating Objects (MOJITO) [J].
Bookwalter, Candice A. ;
Griswold, Mark A. ;
Duerk, Jeffrey L. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :339-349
[7]   MST plus plus : Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction [J].
Cai, Yuanhao ;
Lin, Jing ;
Lin, Zudi ;
Wang, Haoqian ;
Zhang, Yulun ;
Pfister, Hanspeter ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :744-754
[8]  
Chatterjee S., 2020, arXiv
[9]   Equivariant Imaging: Learning Beyond the Range Space [J].
Chen, Dongdong ;
Tachella, Julian ;
Davies, Mike E. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4359-4368
[10]   Simple Baselines for Image Restoration [J].
Chen, Liangyu ;
Chu, Xiaojie ;
Zhang, Xiangyu ;
Sun, Jian .
COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 :17-33