Temporal multi-modal knowledge graph generation for link prediction

被引:0
|
作者
Li, Yuandi [1 ]
Ji, Hui [1 ]
Yu, Fei [2 ]
Cheng, Lechao [3 ]
Che, Nan [4 ]
机构
[1] Jiangsu Univ, Zhenjiang 212013, Peoples R China
[2] Liaoning Univ Technol, Jinzhou 121001, Peoples R China
[3] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
[4] Harbin Univ Sci & Technol, Harbin 150006, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimodal knowledge graph; Temporal knowledge graphs; Knowledge graph generation; Link prediction;
D O I
10.1016/j.neunet.2024.107108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal Multi-Modal Knowledge Graphs (TMMKGs) can be regarded as a synthesis of Temporal Knowledge Graphs (TKGs) and Multi-Modal Knowledge Graphs (MMKGs), combining the characteristics of both. TMMKGs can effectively model dynamic real-world phenomena, particularly in scenarios involving multiple heterogeneous information sources and time series characteristics, such as e-commerce websites, scene recording data, and intelligent transportation systems. We propose a Temporal Multi-Modal Knowledge Graph Generation (TMMKGG) method that can automatically construct TMMKGs, aiming to reduce construction costs. To support this, we construct a dynamic Visual-Audio-Language Multimodal (VALM) dataset, which is particularly suitable for extracting structured knowledge in response to temporal multimodal perception data. TMMKGG explores temporal dynamics and cross-modal integration, enabling multimodal data processing for dynamic knowledge graph generation and utilizing alignment strategies to enhance scene perception. To validate the effectiveness of TMMKGG, we compare it with state-of-the-art dynamic graph generation methods using the VALM dataset. Furthermore, TMMKG exhibits a significant disparity in the ratio of newly introduced entities to their associated newly introduced edges compared to TKGs. Based on this phenomenon, we introduce a Temporal Multi-Modal Link Prediction (TMMLP) method, which outperforms existing state-of-the-art techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Convolutional Models with Multi-Feature Fusion for Effective Link Prediction in Knowledge Graph Embedding
    Guo, Qinglang
    Liao, Yong
    Li, Zhe
    Lin, Hui
    Liang, Shenglin
    ENTROPY, 2023, 25 (10)
  • [42] A question answering system for assembly process of wind turbines based on multi-modal knowledge graph and large language model
    Hu, Zhiqiang
    Li, Xinyu
    Pan, Xinyu
    Wen, Sijie
    Bao, Jinsong
    JOURNAL OF ENGINEERING DESIGN, 2023,
  • [43] Dual Graph Embedding for Object-Tag Link Prediction on the Knowledge Graph
    Li, Chenyang
    Chen, Xu
    Zhang, Ya
    Chen, Siheng
    Lv, Dan
    Wang, Yanfeng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 283 - 290
  • [44] Tensor Decomposition for Link Prediction in Temporal Knowledge Graphs
    Chekol, Melisachew Wudage
    PROCEEDINGS OF THE 11TH KNOWLEDGE CAPTURE CONFERENCE (K-CAP '21), 2021, : 253 - 256
  • [45] Enhancing knowledge graph embedding by composite neighbors for link prediction
    Wang, Kai
    Liu, Yu
    Xu, Xiujuan
    Sheng, Quan Z.
    COMPUTING, 2020, 102 (12) : 2587 - 2606
  • [46] The Research of Link Prediction in Knowledge Graph based on Distance Constraint
    Wei, Linlu
    Liu, Fangfang
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 68 - 75
  • [47] A Collaborative Filtering Model for Link Prediction of Fusion Knowledge Graph
    Yu, Zaifu
    Shang, Wenqian
    Lin, Weiguo
    Huang, Wei
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 33 - 38
  • [48] Multi-Modal Knowledge-Aware Attention Network for Question Answering
    Zhang Y.
    Qian S.
    Fang Q.
    Xu C.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (05): : 1037 - 1045
  • [49] Knowledge graph embedding by projection and rotation on hyperplanes for link prediction
    Thanh Le
    Ngoc Huynh
    Bac Le
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10340 - 10364
  • [50] Explaining Link Prediction Systems based on Knowledge Graph Embeddings
    Rossi, Andrea
    Firmani, Donatella
    Merialdo, Paolo
    Teofili, Tommaso
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2062 - 2075