Overcoming transparency limitations in 3D-printed yttria ceramics

被引:0
|
作者
Zhang, Sinuo [1 ,2 ]
Gal, Chang Woo [2 ]
Sutejo, Imam Akbar [1 ,2 ]
Abbas, Shakeel [1 ,2 ]
Choi, Yeong-Jin [2 ]
Kim, Ha-Neul [2 ]
Park, Young-Jo [2 ]
Yun, Hui-suk [1 ,2 ]
机构
[1] Univ Sci & Technol UST, Dept Adv Mat Engn, Daejeon 34113, South Korea
[2] Korea Inst Mat Sci KIMS, Adv Bio & Healthcare Mat Res Div, Changwon Si 51508, Gyeongsangnam D, South Korea
关键词
Additive manufacturing; Yttria; Layer thickness; Surface roughness; Optical properties; OPTICAL-PROPERTIES; FABRICATION; ROUGHNESS; PROGRESS;
D O I
10.1016/j.jmst.2024.11.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microstructure and surface roughness are two critical factors governing the transparency of transparent ceramics. The manufacturing mechanism of additive manufacturing (AM) layer by layer is destined that the layer thickness has an important influence on the microstructure and surface quality of the printed workpiece. Simultaneously, the occurrence of the stair-stepping phenomenon unavoidably results in a significant surface roughness. Therefore, in this study, yttria (Y2 O3 ) transparent ceramics with different printing layer thicknesses were fabricated by AM to investigate the effect of layer thickness on its optical and mechanical properties. The findings indicate that an increase in the layer thickness correlates with a heightened density in the printed green bodies, subsequently leading to enhanced transmittance in the final sintered body. When the layer thickness approximates or falls below the size of large particle agglomerations found in ceramic powders, numerous pores, and voids emerge within the green bodies. Significantly, at a layer thickness of 45 mu m, the in-line transmittance of Y2 O3 can reach up to 97.73 % of the theoretical limit. In addition, the surface roughness of the Y2 O3 ceramics decreased as the layer thickness increased. To facilitate the further transition from translucent to transparent 3D Y2 O3 structures, a vibration-assisted chemical-mechanical polishing technique was developed by replacing water with a colloidal SiO2 suspension. This technique resulted in a significant reduction in the surface roughness of the Y2 O3 ceramics by 95.42 % and eliminated the stair-stepping phenomenon caused by AM, thus increasing 66.12 % of the in-line transmittance. These enhancements expand their potential applications in laser amplification, optical communications, and other areas requiring high-transparency materials. The method developed in this study can be used for the AM-based fabrication of transparent 3D polycrystalline ceramics. (c) 2025 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:59 / 71
页数:13
相关论文
共 50 条
  • [31] Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils
    Behzadnezhad, Bahareh
    Collick, Bruce D.
    Behdad, Nader
    McMillan, Alan B.
    JOURNAL OF MAGNETIC RESONANCE, 2018, 289 : 113 - 121
  • [32] 3D-printed macroporous materials
    Ferrer, Juan
    Bismarck, Alexander
    Menner, Angelika
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [33] Chiral 3D-printed Bioelectrodes
    Munoz, Jose
    Redondo, Edurne
    Pumera, Martin
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (16)
  • [34] 3D-printed microfluidic automation
    Au, Anthony K.
    Bhattacharjee, Nirveek
    Horowitz, Lisa F.
    Chang, Tim C.
    Folch, Albert
    LAB ON A CHIP, 2015, 15 (08) : 1934 - 1941
  • [35] 3D-printed nanoscale resonators
    Katharina Zeissler
    Nature Electronics, 2021, 4 : 768 - 768
  • [36] Progress in 3D-printed micromachines
    Maruo S.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (09): : 734 - 739
  • [37] 3D-printed surgical guides
    Yilmaz, Alperen
    Badria, Adel F.
    Huri, Pinar Yilgor
    Huri, Gazi
    ANNALS OF JOINT, 2019, 4 (02):
  • [38] 3D-Printed Mechanochromic Materials
    Peterson, Gregory I.
    Larsen, Michael B.
    Ganter, Mark A.
    Storti, Duane W.
    Boydston, Andrew J.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) : 577 - 583
  • [39] 3D-Printed Transparent Glass
    Nguyen, Du T.
    Meyers, Cameron
    Yee, Timothy D.
    Dudukovic, Nikola A.
    Destino, Joel F.
    Zhu, Cheng
    Duoss, Eric B.
    Baumann, Theodore F.
    Suratwala, Tayyab
    Smay, James E.
    Dylla-Spears, Rebecca
    ADVANCED MATERIALS, 2017, 29 (26)
  • [40] A review of 3D-printed sensors
    Ni, Yujie
    Ji, Ru
    Long, Kaiwen
    Bu, Ting
    Chen, Kejian
    Zhuang, Songlin
    APPLIED SPECTROSCOPY REVIEWS, 2017, 52 (07) : 623 - 652