Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries

被引:1
|
作者
Xu, Yilong [1 ]
Shao, Fei [2 ,3 ]
Huang, Yongfeng [2 ,3 ]
Huang, Xudong [2 ]
Jiang, Fuyi [1 ]
Kang, Feiyu [2 ,3 ]
Liu, Wenbao [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Vanadium oxide cathode; Electrical activation; Fast activation; High capacity; V2O5;
D O I
10.1016/j.jcis.2024.12.162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy. By applying a carefully designed precycling charging protocol to NH4+-intercalated vanadium oxide (VON), we achieved activation speeds, reaching peak capacity within just several to 25 cycles-even under high current densities. The electrochemically activated material (E-VON) demonstrates performance metrics: delivering a high specific capacity of 359.1 mAh g-1 at 0.1 A g-1 , maintaining a rate capability of 155.5 mAh g-1 at 10 A g-1 , and showing cycling stability. The electrical activation process enhances ion transport within the VON structure and triggers a Zn2+/H+ coinsertion mechanism during cycling. This mechanism is intricately linked to the reversible formation and dissolution of a basic zinc sulfonate by-product, offering new insights into charge storage processes within vanadium-based AZIB cathodes. Our comprehensive characterization revealed how this activation strategy fundamentally transforms the structure and electrochemical behavior of materials, providing a practical pathway to overcome the longstanding limitations of traditional vanadium oxide cathodes. This study focuses on rapidly activating cathode materials, advancing the development of high-performance AZIBs.
引用
收藏
页码:226 / 235
页数:10
相关论文
共 50 条
  • [1] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai, Shuai
    Wang, Xi
    Wang, Qiming
    Chen, Zhuo
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22403 - 22410
  • [2] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai S.
    Wang X.
    Wang Q.
    Chen Z.
    Zhang Y.
    ACS Applied Materials and Interfaces, 2024, 16 (17): : 22403 - 22410
  • [3] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [4] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [5] Vanadium Oxide Cathode Coinserted by Ni2+ and NH4 + for High-Performance Aqueous Zinc-Ion Batteries
    Shen, Sijin
    Li, Yali
    Dong, Yunxia
    Hu, Jidong
    Chen, Yongchao
    Li, Donghao
    Ma, Hongyun
    Fu, Yujun
    He, Deyan
    Li, Junshuai
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (07) : 8922 - 8929
  • [6] Mg2+ pre-intercalated hydrated vanadium oxide as high-performance cathode for aqueous zinc-ion batteries
    Du, Yehong
    Zhang, Yan
    Wang, Xinyu
    Sun, Juncai
    MODERN PHYSICS LETTERS B, 2022, 36 (17):
  • [7] Al-induced fast phase transition in vanadium oxide cathode materials for high-performance aqueous zinc-ion batteries
    Dai, Youye
    Kong, Xianghua
    Wang, Lei
    Gu, Yuanxiang
    Guo, Jun
    CRYSTENGCOMM, 2025, 27 (06) : 801 - 808
  • [8] Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries
    He, Pan
    Zhang, Guobin
    Liao, Xiaobin
    Yan, Mengyu
    Xu, Xu
    An, Qinyou
    Liu, Jun
    Mai, Liqiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [9] Metal ions and organic molecule co-intercalated vanadium oxide cathode for high-performance zinc-ion batteries
    Hu, Liang
    Sun, Qinghe
    Cai, Hongkun
    Ni, Jian
    Zhang, Jianjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 177
  • [10] Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    Golberg, Dmitri, V
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4159 - 4169