A Unified Biosensor-Vision Multi-Modal Transformer network for emotion recognition

被引:0
作者
Ali, Kamran [1 ]
Hughes, Charles E. [1 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Synthet Real Lab, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Emotion recognition; Biosensor signal; Transformers; Representation learning; SIGNALS; EEG;
D O I
10.1016/j.bspc.2024.107232
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The development of transformer-based models has resulted insignificant advances in addressing various vision and NLP-based research challenges. However, the progress made in transformer-based methods has not been effectively applied to biosensor/physiological signal-based emotion recognition research. The reasons are that transformers require large training data and most of the biosensor datasets are not large enough to train these models. To address this issue, we propose a novel Unified Biosensor-Vision Multimodal Transformer (UBVMT) architecture, which enables self-supervised pretraining by extracting Remote Photoplethysmography (rPPG) signals from videos in the large CMU-MOSEI dataset. UBVMT classifies emotions in the arousal-valence space by combining a 2D representation of ECG/PPG signals with facial information. As opposed to modality-specific architecture, our novel unified architecture of UBVMT consists of homogeneous transformer blocks that take as input the image-based representation of the biosensor signals and the corresponding face information for emotion representation. This minimal modality-specific design reduces the number of parameters in UBVMT by half compared to conventional multimodal transformer networks, enabling its application in our web- based system, where loading large models poses significant memory challenges. UBVMT is pretrained in a self-supervised manner by employing masked autoencoding to reconstruct masked patches of video frames and 2D scalogram images of ECG/PPG signals, and contrastive modeling to align face and ECG/PPG data. Extensive experiments on publicly available datasets show that our UBVMT-based model produces comparable results to state-of-the-art techniques.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Multi-modal Emotion Recognition Based on Hypergraph
    Zong L.-L.
    Zhou J.-H.
    Xie Q.-J.
    Zhang X.-C.
    Xu B.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (12): : 2520 - 2534
  • [12] Bi-Branch Vision Transformer Network for EEG Emotion Recognition
    Lu, Wei
    Tan, Tien-Ping
    Ma, Hua
    IEEE ACCESS, 2023, 11 : 36233 - 36243
  • [13] Contextual and Cross-Modal Interaction for Multi-Modal Speech Emotion Recognition
    Yang, Dingkang
    Huang, Shuai
    Liu, Yang
    Zhang, Lihua
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2093 - 2097
  • [14] Dynamic Confidence-Aware Multi-Modal Emotion Recognition
    Zhu, Qi
    Zheng, Chuhang
    Zhang, Zheng
    Shao, Wei
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) : 1358 - 1370
  • [15] Multi-Modal Residual Perceptron Network for Audio-Video Emotion Recognition
    Chang, Xin
    Skarbek, Wladyslaw
    SENSORS, 2021, 21 (16)
  • [16] Multi-Modal Emotion Recognition Fusing Video and Audio
    Xu, Chao
    Du, Pufeng
    Feng, Zhiyong
    Meng, Zhaopeng
    Cao, Tianyi
    Dong, Caichao
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02): : 455 - 462
  • [17] A Deep GRU-BiLSTM Network for Multi-modal Emotion Recognition from Text
    Yacoubi, Ibtissem
    Ferjaoui, Radhia
    Ben Khalifa, Anouar
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 138 - 143
  • [18] SMIN: Semi-Supervised Multi-Modal Interaction Network for Conversational Emotion Recognition
    Lian, Zheng
    Liu, Bin
    Tao, Jianhua
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2415 - 2429
  • [19] Convolutional Transformer Fusion Blocks for Multi-Modal Gesture Recognition
    Hampiholi, Basavaraj
    Jarvers, Christian
    Mader, Wolfgang
    Neumann, Heiko
    IEEE ACCESS, 2023, 11 : 34094 - 34103
  • [20] A Multi-modal Visual Emotion Recognition Method to Instantiate an Ontology
    Heredia, Juan Pablo A.
    Cardinale, Yudith
    Dongo, Irvin
    Diaz-Amado, Jose
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), 2021, : 453 - 464