CFD-DEM simulation and experimental validation of air classification for tobacco particles

被引:0
|
作者
Liu, Yue [1 ]
Xin, Chengrong [1 ]
Tang, Jun [2 ]
Xu, Shilong [1 ]
Yin, Yanchao [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650500, Yunnan, Peoples R China
[2] China Tobacco Yunnan Ind Co Ltd, Technol Ctr, Kunming 650024, Yunnan, Peoples R China
关键词
CFD-DEM; Flexible particle; Air classification experiment; Particle collision; DUST GENERATION; PARTICULATE SYSTEMS; PRESSURE-DROP; EFFICIENCY; OPTIMIZATION; POWDERS;
D O I
10.1016/j.powtec.2024.120318
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In cigarette processing, the challenge is particularly significant during the air classification of tobacco and stems due to their similar characteristics. This paper employs computational fluid dynamics (CFD) combined with the discrete element method (DEM) to analyze factors affecting separation efficiency and improve performance. The results were validated through laboratory and production line experiments at a 1:1 scale. The tobacco (length: 0 mm-4.75 mm, diameter: 0.32 mm) and stem (length: 0-25.145 mm, diameter: 1.51 mm) were modeled based on production samples. Findings suggest that particle feeding speed primarily impacts tobacco loss rate, while inlet air velocity mainly influences stem removal rate. Optimizing the chamber structure in the simulation resulted in a 63.66 % improvement in separation efficiency. Airflow streamlines, particle distribution, trajectory, and collision behaviors were discussed to illuminate motion characteristics. The flexible particle model moderately influenced separation efficiency and collision behaviors. These insights enhance the understanding of particle separation and the design of separation devices.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CFD-DEM numerical study on air impacted packing densification of equiaxed cylindrical particles
    Gou, Dazhao
    Fan, Wei
    Zhou, Bin
    An, Xizhong
    Yang, Runyu
    Dong, Kejun
    Zou, Ruiping
    Fu, Haitao
    Zhang, Hao
    Yang, Xiaohong
    Zou, Qingchuan
    ADVANCED POWDER TECHNOLOGY, 2022, 33 (07)
  • [32] CFD-DEM model of plugging in flow with cohesive particles
    Saparbayeva, Nazerke
    Balakin, Boris V.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [33] CFD-DEM study on cohesive particles in a spouted bed
    Xu, Huibin
    Zhong, Wenqi
    Yuan, Zhulin
    Yu, A. B.
    POWDER TECHNOLOGY, 2017, 314 : 377 - 386
  • [34] Experimental Investigation and CFD-DEM Simulation of Solids Mixing in Tapered Fluidized Beds
    Sarafan, Kiana
    Molaei Dehkordi, Asghar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22115 - 22130
  • [35] CFD-DEM simulation of flow pattern and particle velocity in a fluidized bed with wet particles
    Song, Chengxiao
    Liu, Daoyin
    Ma, Jiliang
    Chen, Xiaoping
    POWDER TECHNOLOGY, 2017, 314 : 346 - 354
  • [36] CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process
    Akhshik, Siamak
    Behzad, Mehdi
    Rajabi, Majid
    PARTICULATE SCIENCE AND TECHNOLOGY, 2015, 33 (05) : 472 - 481
  • [37] Unresolved CFD-DEM simulation of spherical and ellipsoidal particles in conical and prismatic spouted beds
    Atxutegi, A.
    Kieckhefen, P.
    Pietsch, S.
    Aguado, R.
    Olazar, M.
    Heinrich, S.
    POWDER TECHNOLOGY, 2021, 389 (389) : 493 - 506
  • [38] CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application
    Wang, Shuai
    Luo, Kun
    Hu, Chenshu
    Lin, Junjie
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 197 (280-295) : 280 - 295
  • [39] CFD-DEM simulation of tube erosion in a fluidized bed
    Zhao, Yongzhi
    Xu, Lei
    Zheng, Jinyang
    AICHE JOURNAL, 2017, 63 (02) : 418 - 437
  • [40] CFD-DEM modelling and simulation of pneumatic conveying: A review
    Kuang, Shibo
    Zhou, Mengmeng
    Yu, Aibing
    POWDER TECHNOLOGY, 2020, 365 (365) : 186 - 207