On constrained approximation in higher-order finite element methods in 2D

被引:0
|
作者
Institute of Thermomechanics ASCR, v.v.i., Dolejškova 5, 182 00 Praha 8, Czech Republic [1 ]
机构
来源
Acta Tech CSAV | 2009年 / 2卷 / 199-221期
关键词
20;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Higher-order finite element approximation of the dynamic Laplacian
    Schilling, Nathanael
    Froyland, Gary
    Junge, Oliver
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (05): : 1777 - 1795
  • [2] Higher-order finite element approximation of the dynamic Laplacian
    Schilling, Nathanael
    Froyland, Gary
    Junge, Oliver
    ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54 (05) : 1777 - 1795
  • [3] Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation
    Verfuerth, Barbara
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [4] Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation
    Barbara Verfürth
    Journal of Scientific Computing, 2024, 98
  • [5] HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1561 - 1583
  • [6] Mixed finite element methods and higher-order temporal approximations
    Farthing, MW
    Kees, CE
    Miller, CT
    ADVANCES IN WATER RESOURCES, 2002, 25 (01) : 85 - 101
  • [7] The polynomial-preserving recovery for higher order finite element methods in 2D and 3D
    Naga, A
    Zhang, Z
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2005, 5 (03): : 769 - 798
  • [8] MATLAB 2D higher-order triangle mesh generator with finite element applications using subparametric transformations
    Smitha, T. V.
    Nagaraja, K. V.
    Jayan, Sarada
    ADVANCES IN ENGINEERING SOFTWARE, 2018, 115 : 327 - 356
  • [9] MIXED FINITE ELEMENT METHODS OF HIGHER-ORDER FOR MODEL CONTACT PROBLEMS
    Schroeder, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2323 - 2339
  • [10] Matrix-free higher-order finite element methods for hyperelasticity
    Schussnig, R.
    Fehn, N.
    Munch, P.
    Kronbichler, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 435