Overcomplete intermediate representation of two-particle Green's functions and its relation to partial spectral functions

被引:1
作者
Dirnboeck, Selina [1 ]
Lee, Seung-Sup B. [2 ,3 ]
Kugler, Fabian B. [4 ]
Huber, Sebastian [1 ]
von Delft, Jan [5 ,6 ]
Held, Karsten [1 ]
Wallerberger, Markus [1 ]
机构
[1] TU Wien, Dept Solid State Phys, A-1040 Vienna, Austria
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[3] Seoul Natl Univ, Ctr Theoret Phys, Seoul 08826, South Korea
[4] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[5] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Ctr Nanosci, D-80333 Munich, Germany
[6] Ludwig Maximilians Univ Munchen, Munich Ctr & Quantum Sci & Technol, D-80333 Munich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
Data compression ratio;
D O I
10.1103/PhysRevResearch.6.043228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-particle response functions are a centerpiece of both experimental and theoretical quantum many-body physics. Yet, due to their size and discontinuity structure, they are challenging to handle numerically. Recently, two advances were made to tackle this problem: first, the overcomplete intermediate representation (OIR), which provides a highly efficient compression of Green's functions in imaginary frequency, and second, partial spectral functions (PSFs), which allow for an efficient evaluation in real frequency. We show that there is a two-to-one correspondence between PSFs and OIR coefficients and exploit this fact to construct the OIR for three-or-moreparticle propagators. We then use OIR to fit and compress imaginary-frequency data obtained from the numerical renormalization group (NRG), reaching a compression ratio of more than 400. Finally, we attempt to match the OIR data to partial Green's functions from NRG. Due to the overcompleteness, we achieve only qualitative agreement.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Orthogonal polynomial representation of imaginary-time Green's functions [J].
Boehnke, Lewin ;
Hafermann, Hartmut ;
Ferrero, Michel ;
Lechermann, Frank ;
Parcollet, Olivier .
PHYSICAL REVIEW B, 2011, 84 (07)
[2]   MAXIMUM-ENTROPY ANALYSIS OF OVERSAMPLED DATA PROBLEMS [J].
BRYAN, RK .
EUROPEAN BIOPHYSICS JOURNAL, 1990, 18 (03) :165-174
[3]   Performance analysis of a physically constructed orthogonal representation of imaginary-time Green's function [J].
Chikano, Naoya ;
Otsuki, Junya ;
Shinaoka, Hiroshi .
PHYSICAL REVIEW B, 2018, 98 (03)
[4]  
Economou E.N., 2006, GREENS FUNCTIONS QUA, DOI [DOI 10.1007/3-540-28841-4, 10.1007/3-540-28841-4]
[5]   Learning Feynman Diagrams with Tensor Trains [J].
Fernandez, Yuriel Nunez ;
Jeannin, Matthieu ;
Dumitrescu, Philipp T. ;
Kloss, Thomas ;
Kaye, Jason ;
Parcollet, Olivier ;
Waintal, Xavier .
PHYSICAL REVIEW X, 2022, 12 (04)
[6]  
gauss-centre, About us
[7]   Analytic Continuation of Multipoint Correlation Functions [J].
Ge, Anxiang ;
Halbinger, Johannes ;
Lee, Seung-Sup B. ;
von Delft, Jan ;
Kugler, Fabian B. .
ANNALEN DER PHYSIK, 2024, 536 (07)
[8]   Spectral representation of Matsubara n-point functions: Exact kernel functions and applications [J].
Halbinger, Johannes ;
Schneider, Benedikt ;
Sbierski, Bjoern .
SCIPOST PHYSICS, 2023, 15 (05)
[9]   Discrete Lehmann representation of imaginary time Green's functions [J].
Kaye, Jason ;
Chen, Kun ;
Parcollet, Olivier .
PHYSICAL REVIEW B, 2022, 105 (23)
[10]   Tiling with triangles: parquet and GWγ methods unified [J].
Krien, Friedrich ;
Kauch, Anna ;
Held, Karsten .
PHYSICAL REVIEW RESEARCH, 2021, 3 (01)