An overview of selected catalytic chemical vapor deposition parameter for aligned carbon nanotube growth

被引:0
作者
机构
[1] Carbon Research Technology Research Group, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, 76100, Melaka
[2] Engineering Materials Department, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal, 76100, Melaka
[3] Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor
来源
Azam, Mohd Asyadi (asyadi@utem.edu.my) | 1600年 / Bentham Science Publishers卷 / 04期
关键词
Aligned carbon nanotubes; Carbon nanotubes growth parameter; Catalytic chemical vapor deposition; Supergrowth;
D O I
10.2174/2210681204666140905221405
中图分类号
学科分类号
摘要
Aligned carbon nanotube (A-CNT) has been extensively studied due to their high potential in many applications. Despite the fact that catalyst preparation is the key role to grow A-CNTs, the parameter of catalytic chemical vapor deposition (C-CVD) also influences A-CNT growth and its morphologies. This review focused to critically synthesize the published data in scientific report on A-CNT for better understanding the C-CVD parameter governing vertically A-CNT growth. The review will mainly discuss the influence of C-CVD processing temperature, C-CVD processing time, and carbon feedstock in A-CNT growth and its effects on A-CNT morphologies. Challenges and future perspectives in the synthesis of aligned carbon nanotubes have also been discussed. © 2014 Bentham Science Publishers.
引用
收藏
页码:2 / 30
页数:28
相关论文
共 162 条
  • [1] Hsu T.R., MEMS and Microsystems: Design and Manufacture, (2002)
  • [2] Kroto H.W., Heath J.R., Obrien S.C., Curl R.F., Smalley R.E., C60: Buckminsterfullerene, Nature, 318, pp. 162-163, (1985)
  • [3] Iijima S., Helical microtubules of graphitic carbon, Nature, 354, pp. 56-58, (1991)
  • [4] Bethune D.S., Kiang C.H., Devries M.S., Gorman G., Savoy R., Vazquez R., Beyers R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363, pp. 605-607, (1993)
  • [5] Iijima S., Ishihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, pp. 603-605, (1993)
  • [6] Lee S.W., Korposh S., Onodera T., Toko K., Electrochemical detection of the explosive taggant 2,3-dimethyldinitrobutane using a single-walled carbon nanotube employed TiO2 composite film, Nanoasia, 1, pp. 47-52, (2011)
  • [7] Pint C.L., Pheasant S.T., Pasquali M., Coulter K.E., Schmidt H.K., Hauge R.H., Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates, Nano Lett, 8, pp. 1879-1883, (2008)
  • [8] Huang Y.J., Chang H.Y., Chang H.C., Shih Y.T., Su W.J., Ciou C.H., Chen Y.L., Honda S., Huang Y.S., Lee K.Y., Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating, Mat. Sci. Eng. B-Solid, 182, pp. 14-20, (2014)
  • [9] Murata S., Imanishi M., Hasegawa S., Namba R., Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells, J. Power Sources, 253, pp. 104-113, (2014)
  • [10] Nam T.H., Goto K., Nakayama H., Oshima K., Premalal V., Shimamura Y., Inoue Y., Naito K., Kobayashi S., Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites, Compos. Part A-Appl. S, 64, pp. 194-202, (2014)