A simple upper bound for the number of spanning trees of regular graphs

被引:0
|
作者
机构
来源
Discrete Math Appl | 2008年 / 4卷 / 363-366期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] An upper bound for domination number of 5-regular graphs
    Hua-Ming Xing
    Liang Sun
    Xue-Gang Chen
    Czechoslovak Mathematical Journal, 2006, 56 : 1049 - 1061
  • [22] On graphs with the maximum number of spanning trees
    Kelmans, AK
    RANDOM STRUCTURES & ALGORITHMS, 1996, 9 (1-2) : 177 - 192
  • [23] The Number Of Spanning Trees And Chains Of Graphs
    Qiao, Sheng Ning
    Chen, Bing
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 10 - 16
  • [24] COMPARISON OF GRAPHS BY THEIR NUMBER OF SPANNING TREES
    KELMANS, AK
    DISCRETE MATHEMATICS, 1976, 16 (03) : 241 - 261
  • [25] THE NUMBER OF SPANNING TREES OF DOUBLE GRAPHS
    Wu-Xin, Liu
    Fu-Yi, Wei
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (01): : 183 - 190
  • [26] Counting the number of spanning trees of graphs
    Ghorbani, M.
    Bani-Asadi, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01): : 111 - 121
  • [27] The number of spanning trees in circulant graphs
    Zhang, YP
    Yong, XR
    Golin, MJ
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 337 - 350
  • [28] The Number of Spanning Trees in the Composition Graphs
    Li, Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [29] SHARP UPPER AND LOWER BOUNDS ON THE NUMBER OF SPANNING TREES IN CARTESIAN PRODUCT OF GRAPHS
    Azarija, Jernej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 785 - 790
  • [30] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):