Radiomics and machine learning model can improve the differentiation between ocular adnexal lymphoma and idiopathic orbital inflammation

被引:0
作者
Wang Guorong [1 ]
Qu Xiaoxia [1 ]
Guo Jian [1 ]
Luo Yongheng [2 ]
Xian Junfang [1 ]
机构
[1] Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
[2] Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
关键词
D O I
暂无
中图分类号
R739.7 [眼肿瘤]; R777.5 [眼眶疾病];
学科分类号
100214 ; 100212 ;
摘要
<正>
引用
收藏
相关论文
共 50 条
[21]   Model Based on Ultrasound Radiomics and Machine Learning to Preoperative Differentiation of Follicular Thyroid Neoplasm [J].
Deng, Yiwen ;
Zeng, Qiao ;
Zhao, Yu ;
Hu, Zhen ;
Zhan, Changmiao ;
Guo, Liangyun ;
Lai, Binghuang ;
Huang, Zhiping ;
Fu, Zhiyong ;
Zhang, Chunquan .
JOURNAL OF ULTRASOUND IN MEDICINE, 2025, 44 (03) :567-579
[22]   Deciphering the role of HLF in idiopathic orbital inflammation: integrative analysis via bioinformatics and machine learning techniques [J].
Wu, Zixuan ;
Song, Qiujie ;
Liu, Meiling ;
Hu, Yi ;
Peng, Xin ;
Zhang, Zheyuan ;
Yao, Xiaolei ;
Peng, Qinghua .
SCIENTIFIC REPORTS, 2024, 14 (01)
[23]   Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic Lymphoma Based on Radiomics and Machine Learning in Contrast-Enhanced Computer Tomography [J].
Xu, Hanyue ;
Zou, Xiuhe ;
Zhao, Yunuo ;
Zhang, Tao ;
Tang, Youyin ;
Zheng, Aiping ;
Zhou, Xianghong ;
Ma, Xuelei .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2021, 20
[24]   Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach [J].
Yimit, Yasen ;
Yasin, Parhat ;
Tuersun, Abuduresuli ;
Abulizi, Abudoukeyoumujiang ;
Jia, Wenxiao ;
Wang, Yunling ;
Nijiati, Mayidili .
EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2023, 28 (01)
[25]   Multi-modality differentiation between myxofibrosarcoma and myxoma using radiomics and machine learning models [J].
Cui, Can ;
Johnson, Samuel R. ;
Moran, Cullen P. ;
Hajdu, Katherine S. ;
Shechtel, Joanna ;
Block, John J. ;
Bingham, Brian ;
Smith, David ;
Luo, Leo Y. ;
Kang, Hakmook ;
Halpern, Jennifer L. ;
Schwartz, Herbert S. ;
Holt, Ginger E. ;
Lawrenz, Joshua M. ;
Dawant, Benoit M. .
MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
[26]   Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach [J].
Yasen Yimit ;
Parhat Yasin ;
Abuduresuli Tuersun ;
Abudoukeyoumujiang Abulizi ;
Wenxiao Jia ;
Yunling Wang ;
Mayidili Nijiati .
European Journal of Medical Research, 28
[27]   Automatic segmentation model and machine learning model grounded in ultrasound radiomics for distinguishing between low malignant risk and intermediate-high malignant risk of adnexal masses [J].
Liu, Lu ;
Cai, Wenjun ;
Zheng, Feibo ;
Tian, Hongyan ;
Li, Yanping ;
Wang, Ting ;
Chen, Xiaonan ;
Zhu, Wenjing .
INSIGHTS INTO IMAGING, 2025, 16 (01)
[28]   Machine Learning Model with Texture Analysis for Automatic Classification of Histopathological Images of Ocular Adnexal Mucosa-associated Lymphoid Tissue Lymphoma of Two Different Origins [J].
Tagami, Mizuki ;
Nishio, Mizuho ;
Katsuyama-Yoshikawa, Atsuko ;
Misawa, Norihiko ;
Sakai, Atsushi ;
Haruna, Yusuke ;
Azumi, Atsushi ;
Honda, Shigeru .
CURRENT EYE RESEARCH, 2023, 48 (12) :1195-1202
[29]   Radiomics in the differentiation between upper tract urothelial carcinoma and renal cell carcinoma - can we overcome the performance of conventional diagnostics by machine learning? [J].
Rodler, S. ;
Rzany, M. ;
Buchner, A. ;
Stief, C. ;
Fabritius, M. ;
Winkelmann, M. ;
Kazmierczak, P. ;
Marcon, J. .
EUROPEAN UROLOGY, 2023, 83
[30]   RADIOMICS-BASED MACHINE LEARNING APPROACH IN DIFFERENTIATION BETWEEN VESTIBULAR SCHWANNOMA AND MENINGIOMA IN THE CEREBELLOPONTINE ANGLE [J].
Zhang, Y. ;
Chen, C. ;
Xu, J. .
NEURO-ONCOLOGY, 2021, 23 :26-26