Efficient Implementation of Kernel Regularization Based on ADMM and Its Application to Room Impulse Response Estimation

被引:1
作者
Fujimoto, Yusuke [1 ]
Okamoto, Yuki [1 ]
Takaki, Ken [2 ]
机构
[1] Univ Kitakyushu, Dept Environm Engn, Fukuoka 8080135, Japan
[2] Univ Tokyo, Grad Sch Engn, Dept Elect Engn & Informat Syst, Tokyo 1138656, Japan
来源
IEEE ACCESS | 2024年 / 12卷
基金
日本学术振兴会;
关键词
Acoustic impulse response; alternating direction method of multiplier; impulse response; kernel regularization; non-parametric identification; regularization; system identification; SYSTEM-IDENTIFICATION; INPUT-DESIGN; ASYMPTOTIC PROPERTIES;
D O I
10.1109/ACCESS.2024.3479208
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work discusses an efficient implementation of the kernel regularization method. In particular, this work focuses on the Alternating Direction Method of Multipliers (ADMM) which is one of the convex optimization methods. This work employs two assumptions; (1) the identification input is periodic, and (2) the kernel matrix is tridiagonal. It is shown that ADMM updates can be implemented efficiently under these assumptions. A numerical example is shown to demonstrate the effectiveness of the proposed method. In addition, a practical experiment to estimate the room impulse response of a classroom at the University of Kitakyushu is shown.
引用
收藏
页码:152721 / 152729
页数:9
相关论文
共 33 条
[1]  
Andrecut M., 2000, INTRO NUMERICAL ANAL
[2]   Convex Regularizations for the Simultaneous Recording of Room Impulse Responses [J].
Benichoux, Alexis ;
Simon, Laurent S. R. ;
Vincent, Emmanuel ;
Gribonval, Remi .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (08) :1976-1986
[3]  
Bertsekas D., 2016, NONLINEAR PROGRAMMIN
[4]  
Bishop C.M., 2006, Pattern Recognition and Machine Learning, DOI 10.1007/978-0-387-45528-0
[5]   On the mathematical foundations of stable RKHSs [J].
Bisiacco, Mauro ;
Pillonetto, Gianluigi .
AUTOMATICA, 2020, 118
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]   Maximum Entropy Kernels for System Identification [J].
Carli, Francesca Paola ;
Chen, Tianshi ;
Ljung, Lennart .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (03) :1471-1477
[8]   Continuous-Time DC Kernel-A Stable Generalized First-Order Spline Kernel [J].
Chen, Tianshi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) :4442-4447
[9]   On kernel design for regularized LTI system identification [J].
Chen, Tianshi .
AUTOMATICA, 2018, 90 :109-122
[10]   Maximum entropy properties of discrete-time first-order stable spline kernel [J].
Chen, Tianshi ;
Ardeshiri, Tohid ;
Carli, Francesca P. ;
Chiuso, Alessandro ;
Ljung, Lennart ;
Pillonetto, Gianluigi .
AUTOMATICA, 2016, 66 :34-38