Semantic Scene Completion With 2D and 3D Feature Fusion
被引:0
|
作者:
Park, Sang-Min
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Sci & Technol, Grad Sch Automot Engn, Seoul 01811, South KoreaSeoul Natl Univ Sci & Technol, Grad Sch Automot Engn, Seoul 01811, South Korea
Park, Sang-Min
[1
]
Ha, Jong-Eun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, Seoul 01811, South KoreaSeoul Natl Univ Sci & Technol, Grad Sch Automot Engn, Seoul 01811, South Korea
Ha, Jong-Eun
[2
]
机构:
[1] Seoul Natl Univ Sci & Technol, Grad Sch Automot Engn, Seoul 01811, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, Seoul 01811, South Korea
来源:
IEEE ACCESS
|
2024年
/
12卷
基金:
新加坡国家研究基金会;
关键词:
Three-dimensional displays;
Feature extraction;
Semantics;
Solid modeling;
Transformers;
Cameras;
Estimation;
Decoding;
Proposals;
Predictive models;
Semantic scene completion;
transformer;
3D scene understanding;
occupancy;
D O I:
10.1109/ACCESS.2024.3470754
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
3D semantic scene completion (SSC) aims to get a dense semantic understanding of an environment in 3D. It requires a geometric and semantic knowledge of the surrounding environment and the filling of void areas. In this paper, we propose an improved algorithm by modifying VoxFormer. VoxFormer consists of two steps for 3D semantic scene completion. First, it predicts the occupancy of an environment. Then, it completes the semantic scene completion through a masked autoencoder. It requires separate training for two stages, which can cause a disconnect of information from input to output. We propose an improved VoxFormer algorithm that makes end-to-end training possible by integrating occupancy prediction and scene completion. We use pseudo-LiDAR computed by depth estimation as input of 3D CNN, which generates queries for cross attention with 2D features. This makes the process end-to-end by connecting occupancy prediction and semantic scene completion. Experimental results using SemanticKITTI show improvement in the proposed algorithm.
机构:
Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Dongfeng Motor Corp, Wuhan 430056, Peoples R ChinaTsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Yang, Yanding
Jiang, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R ChinaTsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Jiang, Kun
Yang, Diange
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R ChinaTsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Yang, Diange
Jiang, Yanqin
论文数: 0引用数: 0
h-index: 0
机构:
Natl Innovat Ctr Intelligent & Connected Vehicles, Beijing 100176, Peoples R ChinaTsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
Jiang, Yanqin
Lu, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
Natl Innovat Ctr Intelligent & Connected Vehicles, Beijing 100176, Peoples R ChinaTsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Wei, Wenwen
Wei, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Wei, Ping
Qin, Jialu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Qin, Jialu
Liao, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Liao, Zhimin
Wang, Shuaijie
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Wang, Shuaijie
Cheng, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Beijing 100871, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Cheng, Xiang
Liu, Meiqin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Liu, Meiqin
Zheng, Nanning
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Peoples R China