Investigating Abiotic Sources of Spectral Variability From Multitemporal Hyperspectral Airborne Acquisitions Over the French Guyana Canopy

被引:0
作者
Prieur, Colin [1 ]
Laybros, Antony [2 ]
Frati, Giovanni [1 ]
Schlapfer, Daniel [3 ]
Chanussot, Jocelyn [4 ]
Vincent, Gregoire [1 ]
机构
[1] Univ Montpellier, AMAP, CIRAD, CNRS,INRAE,IRD, F-34980 Montpellier, France
[2] AMAP, ONF, F-97300 Montpellier, France
[3] ReSe Applicat LLC, CH-9500 Wil, Switzerland
[4] Univ Grenoble Alpes, CNRS, Grenoble INP, LJK,Inria, F-38000 Grenoble, France
关键词
Hyperspectral imaging; reflectivity; spectroscopy; vegetation mapping; ATMOSPHERIC PARAMETERS; LEAF; REFLECTANCE; AMAZON; MODEL; CLASSIFICATION; SCATTERING; TREES; FIELD;
D O I
10.1109/JSTARS.2024.3475050
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classifiers trained on airborne hyperspectral imagery are proficient in identifying tree species in hyperdiverse tropical rainforests. However, spectral fluctuations, influenced by intrinsic and environmental factors, such as the heterogeneity of individual crown properties and atmospheric conditions, pose challenges for large-scale mapping. This study proposes an approach to assess the instability of airborne imaging spectroscopy reflectance in response to environmental variability. Through repeated overflights of two tropical forest sites in French Guiana, we explore factors that affect the spectral similarity between dates and acquisitions. By decomposing acquisitions into subsets and analyzing different sources of variability, we analyze the stability of reflectance and various vegetation indices with respect to specific sources of variability. Factors such as the variability of the viewing and sun angles or the variability of the atmospheric state shed light on the impact of sources of spectral instability, informing processing strategies. Our experiments conclude that the environmental factors that affect the canopy reflectance the most vary according to the considered spectral domain. In the short wave infrared (SWIR) domain, solar angle variation is the main source of variability, followed by atmospheric and viewing angles. In the visible and near infrared (VNIR) domain, atmospheric variability dominates, followed by solar angle and viewing angle variabilities. Despite efforts to address these variabilities, significant spectral instability persists, highlighting the need for more robust representations and improved correction methods for reliable species-specific signatures.
引用
收藏
页码:18751 / 18768
页数:18
相关论文
共 75 条
[1]   Road networks predict human influence on Amazonian bird communities [J].
Ahmed, Sadia E. ;
Lees, Alexander C. ;
Moura, Nargila G. ;
Gardner, Toby A. ;
Barlow, Jos ;
Ferreira, Joice ;
Ewers, Robert M. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2014, 281 (1795)
[2]   MODTRAN4-based atmospheric correction algorithm: FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) [J].
Anderson, GP ;
Felde, GW ;
Hoke, ML ;
Ratkowski, AJ ;
Cooley, T ;
Chetwynd, JH ;
Gardner, JA ;
Alder-Golden, SM ;
Matthew, MW ;
Berk, A ;
Bernstein, LS ;
Acharya, PK ;
Miller, D ;
Lewis, P .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 :65-71
[3]   Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions [J].
Arroyo-Mora, J. Pablo ;
Kalacska, Margaret ;
Loke, Trond ;
Schlapfer, Daniel ;
Coops, Nicholas C. ;
Lucanus, Oliver ;
Leblanc, George .
REMOTE SENSING OF ENVIRONMENT, 2021, 258
[4]   Biophysical and biochemical sources of variability in canopy reflectance [J].
Asner, GP .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (03) :234-253
[5]   Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy [J].
Baldeck, Claire A. ;
Asner, Gregory P. ;
Martin, Robin E. ;
Anderson, Christopher B. ;
Knapp, David E. ;
Kellner, James R. ;
Wright, S. Joseph .
PLOS ONE, 2015, 10 (07)
[6]  
Ball J. G. C., 2024, Cold Spring Harbor Laboratory
[7]   MODTRAN™5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options:: Update [J].
Berk, A ;
Anderson, GP ;
Acharya, PK ;
Bernstein, LS ;
Muratov, L ;
Lee, J ;
Fox, M ;
Adler-Golden, SM ;
Chetwynd, JH ;
Hoke, ML ;
Lockwood, RB ;
Gardner, JA ;
Cooley, TW ;
Borel, CC ;
Lewis, PE .
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 :662-667
[8]   Propagation of uncertainty in atmospheric parameters to hyperspectral unmixing [J].
Bhatia, Nitin ;
Iordache, Marian-Daniel ;
Stein, Alfred ;
Reusen, Ils ;
Tolpekin, Valentyn A. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :472-484
[9]  
Bongers F., 2001, Nouragues: Dynamics and plant-animal interactions in a neotropical rainforest, V80
[10]   Spectral Variability in Hyperspectral Data Unmixing [J].
Borsoi, Ricardo ;
Imbiriba, Tales ;
Bermudez, Jose Carlos ;
Richard, Cedric ;
Chanussot, Jocelyn ;
Drumetz, Lucas ;
Tourneret, Jean-Yves ;
Zare, Alina ;
Jutten, Christian .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) :223-270