Thermodynamic modeling of alkali-activated fly ash paste

被引:1
|
作者
Chen, Yun [1 ,2 ]
Ma, Bin [3 ]
Chen, Jiayi [1 ]
Li, Zhenming [4 ,5 ]
Liang, Xuhui [1 ]
de Lima, Luiz Miranda [1 ]
Liu, Chen [1 ]
Yin, Suhong [2 ]
Yu, Qijun [2 ]
Lothenbach, Barbara [6 ]
Ye, Guang [1 ]
机构
[1] Delft Univ Technol, Fac Civil Engn & Geosci, Sect Mat & Environm, NL-2628 CN Delft, Netherlands
[2] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] North China Elect Power Univ, Coll Environm Sci & Engn, Beijing 102206, Peoples R China
[4] Harbin Inst Technol, Sch Civil & Environm Engn, Shenzhen 518055, Peoples R China
[5] Harbin Inst Technol, Guangdong Prov Key Lab Intelligent & Resilient Str, Shenzhen 518055, Peoples R China
[6] Swiss Fed Labs Mat Sci & Technol Empa, Concrete & Asphalt Lab, CH-8600 Dubendorf, Switzerland
关键词
Alkali-activated fly ash; Reaction kinetics; Thermodynamic modeling; Image analysis; Pore solution; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; S-H; CURING CONDITIONS; SIO2/NA2O RATIO; PHASE EVOLUTION; CEMENT PASTES; PART II; GELS; MICROSTRUCTURE;
D O I
10.1016/j.cemconres.2024.107699
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Previously, the lack of a thermodynamic database for N-(C-)A-S-H gel limited the application of thermodynamic modeling to alkali-activated fly ash (AAFA). This study pioneers thermodynamic modeling of AAFA using a recently developed thermodynamic dataset for N-(C-)A-S-H gel. The reaction products, pore solutions and reaction kinetics of AAFA pastes were experimentally determined. Based on the reaction kinetics, the composition of the solid phases and the pore solution of AAFA were modeled over time. The results showed that the simulated compositions of the solid reaction products and pore solution match closely with the experimental results, especially for the sodium hydroxide-activated system. Moreover, modeling results point out the potential presence of minor reaction products (e.g., C-(N-)A-S-H gel, microcrystalline ferrihydrite, Mg-containing phases) undetectable by experimental techniques. The study also demonstrated that thermodynamic modeling accurately captured the amount of bound water in reaction products, highlighting its robustness in both qualitative and quantitative analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multiscale study of microstructural evolution in alkali-activated fly ash-slag paste at elevated temperatures
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2023, 143
  • [22] Mechanical Properties, Microstructure, and Chloride Content of Alkali-Activated Fly Ash Paste Made with Sea Water
    Siddique, Salman
    Jang, Jeong Gook
    MATERIALS, 2020, 13 (06)
  • [23] Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud
    Sun, Renjuan
    Fang, Chen
    Zhang, Hongzhi
    Ling, Yifeng
    Feng, Jingjing
    Qi, Hui
    Ge, Zhi
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 291
  • [24] Effect of Solid Sodium Silicate on Workability, Hydration and Strength of Alkali-Activated GGBS/Fly Ash Paste
    Dong, Tingkai
    Sun, Tao
    Xu, Fang
    Ouyang, Gaoshang
    Wang, Hongjian
    Yang, Fan
    Wang, Ziyan
    COATINGS, 2023, 13 (04)
  • [25] Graphene oxide modified, clinker-free cementitious paste with principally alkali-activated fly ash
    Li, Zhipeng
    Shi, Xianming
    FUEL, 2020, 269
  • [26] Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste
    Lee, N. K.
    Lee, H. K.
    CEMENT & CONCRETE COMPOSITES, 2016, 72 : 168 - 179
  • [27] Effect of elevated temperature on polypropylene fiber reinforced alkali-activated high calcium fly ash paste
    Chindaprasirt, Prinya
    Boonbamrung, Thammanun
    Poolsong, Apivich
    Kroehong, Wunchock
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2021, 15 (15)
  • [28] Alkali activated fly ash: effect of admixtures on paste rheology
    Criado, M.
    Palomo, A.
    Fernandez-Jimenez, A.
    Banfill, P. F. G.
    RHEOLOGICA ACTA, 2009, 48 (04) : 447 - 455
  • [29] Alkali activated fly ash: effect of admixtures on paste rheology
    M. Criado
    A. Palomo
    A. Fernández-Jiménez
    P. F. G. Banfill
    Rheologica Acta, 2009, 48 : 447 - 455
  • [30] Microanalysis of alkali-activated fly ash-CH pastes
    Williams, PJ
    Biernacki, JJ
    Walker, LR
    Meyer, HM
    Rawn, CJ
    Bai, JM
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (06) : 963 - 972