Materials engineering in electrochemical biosensors: A review of cost-effective approaches to efficient biodetection

被引:0
作者
Fontana-Escartin, Adrian [1 ,2 ,3 ]
Bertran, Oscar [3 ]
Aleman, Carlos [1 ,2 ,4 ]
机构
[1] Univ Politecn Cataluna, Dept Engn Quim, C Maristany 10-14, Barcelona 08019, Spain
[2] Univ Politecn Cataluna, Barcelona Res Ctr Multiscale Sci & Engn, EEBE, C Maristany 10-14, Barcelona 08019, Spain
[3] Univ Politecn Cataluna, Dept Fis EETAC, C Esteve Terrades 7, Castelldefels 08860, Spain
[4] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, C Baldiri Reixac 10-12, Barcelona 08028, Spain
关键词
Electrochemical sensors; Electroactive materials; Biomolecules; Biosensors; TRANSITION-METAL CARBIDES; GLUCOSE BIOSENSOR; URIC-ACID; NANOPARTICLES; SENSOR; TEMPERATURE; NANOSHEETS; ELECTRODE; DOPAMINE; OXIDASE;
D O I
10.1016/j.mtcomm.2024.111030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrochemical sensors are sophisticated devices capable of detecting a wide range of chemical compounds with exceptional sensitivity and efficiency. Their importance is particularly pronounced in biomedical applications, where the rapid and accurate detection of biomolecules such as dopamine (DA), glucose (G), and nicotinamide adenine dinucleotide (NADH) is crucial for early diagnosis and disease management. These biomarkers are key in monitoring and managing conditions like diabetes, Parkinson and Alzheimer diseases, and bacterial infections. This review provides a comprehensive overview of electrochemical biosensors, detailing the methodologies commonly used by researchers and the latest technological advancements that enable more efficient device development. In this regard, the focus is on the impact and trends of various materials utilized in the fabrication of electrochemical biosensors, including conducting polymers, ceramics, and carbon-based materials. By examining the state of the art, we explore how these materials contribute to enhanced performance and reliability. Furthermore, while the development of highly selective and sensitive nanocomposites has been a primary focus in the field, this review also highlights efforts toward creating cost-effective biosensors with rapid prototyping capabilities. Such innovations aim to maintain high efficacy in electrochemical detection while making advanced diagnostics more accessible. In conclusion, this study aims to inform researchers and professionals about the evolving materials landscape in electrochemical biosensing, offering insights into the future directions of this critical technology.
引用
收藏
页数:14
相关论文
共 185 条
[41]   Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: A first step toward covalent immobilization of bioactive molecules [J].
Duran, Ivan Rodriguez ;
Vanslambrouck, Stephanie ;
Chevallier, Pascale ;
Hoesli, Corinne A. ;
Laroche, Gaetan .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2020, 189
[42]   Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections [J].
Escartin, AdrianFontana- ;
El Hauadi, Karima ;
Lanzalaco, Sonia ;
Perez-Madrigal, Maria M. ;
Armelin, Elaine ;
Turon, Pau ;
Aleman, Carlos .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (02) :1104-1115
[43]   Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection [J].
Fahmy, Heba Mohamed ;
Abu Serea, Esraa Samy ;
Salah-Eldin, Reem Essam ;
Al-Hafiry, Sara Ayman ;
Ali, Miar Khaled ;
Shalan, Ahmed Esmail ;
Lanceros-Mendez, Senentxu .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2022, 8 (03) :964-1000
[44]   Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes [J].
Faria-Tischer, Paula. C. S. ;
Costa, Carlos. A. R. ;
Tozetti, Izadora ;
Dall'Antonia, Luiz H. ;
Vidotti, Marcio .
RSC ADVANCES, 2016, 6 (12) :9571-9580
[45]   Impact of the size effect on enzymatic electrochemical detection based on metal-organic frameworks [J].
Feng, Yi ;
Zhao, Yuting ;
Ge, Jun .
ANALYTICA CHIMICA ACTA, 2021, 1149
[46]   Electrochemical Sensor for Hydrogen Peroxide Based on Prussian Blue Electrochemically Deposited at the TiO2-ZrO2-Doped Carbon Nanotube Glassy Carbon-Modified Electrode [J].
Fernandez, Lenys ;
Alvarez-Paguay, Jocelyne ;
Gonzalez, Gema ;
Uribe, Rafael ;
Bolanos-Mendez, Diego ;
Pineiros, Jose Luis ;
Celi, Luis ;
Espinoza-Montero, Patricio J. .
FRONTIERS IN CHEMISTRY, 2022, 10
[47]   Oxygen plasma treated thermoplastics as integrated electroresponsive sensors [J].
Fontana-Escartin, Adrian ;
Lanzalaco, Sonia ;
Zhilev, Georgi ;
Armelin, Elaine ;
Bertran, Oscar ;
Aleman, Carlos .
MATERIALS TODAY COMMUNICATIONS, 2024, 38
[48]   Aqueous alginate/MXene inks for 3D printable biomedical devices [J].
Fontana-Escartin, Adrian ;
Lanzalaco, Sonia ;
Bertran, Oscar ;
Aradilla, David ;
Aleman, Carlos .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 671
[49]   Smart Design of Sensor-Coated Surgical Sutures for Bacterial Infection Monitoring [J].
Fontana-Escartin, Adrian ;
El Hauadi, Karima ;
Lanzalaco, Sonia ;
Perez-Madrigal, Maria M. ;
Armelin, Elaine ;
Turon, Pau ;
Aleman, Carlos .
MACROMOLECULAR BIOSCIENCE, 2023, 23 (09)
[50]   Electrochemical activation for sensing of three-dimensional-printed poly(lactic acid) using low-pressure plasma [J].
Fontana-Escartin, Adrian ;
Lanzalaco, Sonia ;
Perez-Madrigal, Maria M. ;
Bertran, Oscar ;
Aleman, Carlos .
PLASMA PROCESSES AND POLYMERS, 2022, 19 (12)