Event-Triggered Multi-Sensor Scheduling for Remote State Estimation Over Packet-Dropping Networks

被引:2
作者
Zhong, Yuxing [1 ]
Huang, Lingying [2 ]
Mo, Yilin [3 ,4 ]
Shi, Dawei [5 ]
Shi, Ling [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[4] Tsinghua Univ, BNRist, Beijing 100084, Peoples R China
[5] Beijing Inst Technol, Sch Automat, Beijing 100811, Peoples R China
基金
中国国家自然科学基金;
关键词
Vectors; Stochastic processes; Trajectory; State estimation; Scheduling; Probability density function; Drones; Accuracy; Time measurement; Technological innovation; Event-triggered estimation; networked control systems; sensor scheduling;
D O I
10.1109/TSP.2024.3473988
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the multi-sensor remote state estimation problem over packet-dropping networks and employ a stochastic event-triggered scheduler to conserve energy and bandwidth. Due to packet drops, the Gaussian property of the system state, commonly used in the literature, no longer holds. We prove that the state instead follows a Gaussian mixture (GM) model and develop the corresponding (optimal) minimum mean-squared error (MMSE) estimator. To tackle the exponential complexity of the optimal estimator, the optimal Gaussian approximate (OGA) estimator and its heuristic GM extension are further derived. Our simulations show that the approximate estimators perform similarly to the optimal estimator with significantly reduced computation time. Furthermore, our proposed scheduler outperforms standard event-triggered schedulers in a target-tracking scenario.
引用
收藏
页码:5036 / 5047
页数:12
相关论文
共 28 条
[1]  
Anderson BD., 2012, OPTIMAL FILTERING
[2]  
Åström KJ, 2002, IEEE DECIS CONTR P, P2011, DOI 10.1109/CDC.2002.1184824
[3]  
Baker CR, 2007, 21ST INTERNATIONAL CONFERENCE ON ADVANCED NETWORKING AND APPLICATIONS WORKSHOPS/SYMPOSIA, VOL 2, PROCEEDINGS, P832
[4]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[5]   LINEAR MINIMUM MEAN-SQUARE ERROR ESTIMATION FOR DISCRETE-TIME MARKOVIAN JUMP LINEAR-SYSTEMS [J].
COSTA, OLV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (08) :1685-1689
[6]   Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems [J].
Costa, OLV ;
Guerra, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (08) :1351-1356
[7]   Stochastic Event-Triggered Sensor Schedule for Remote State Estimation [J].
Han, Duo ;
Mo, Yilin ;
Wu, Junfeng ;
Weerakkody, Sean ;
Sinopoli, Bruno ;
Shi, Ling .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (10) :2661-2675
[8]   Stochastic Event-Based Sensor Schedules for Remote State Estimation in Cognitive Radio Sensor Networks [J].
Huang, Lingying ;
Wang, Jiazheng ;
Kung, Enoch ;
Mo, Yilin ;
Wu, Junfeng ;
Shi, Ling .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (05) :2407-2414
[9]   ESTIMATION OF DISCRETE PROCESSES UNDER MULTIPLICATIVE AND ADDITIVE NOISE CONDITIONS [J].
JAFFER, AG ;
GUPTA, SC .
INFORMATION SCIENCES, 1971, 3 (03) :267-&
[10]   On the Nonexistence of Event Triggers That Preserve Gaussian State in Presence of Packet-Drop [J].
Kung, Enoch ;
Wang, Jiazheng ;
Wu, Junfeng ;
Shi, Dawei ;
Shi, Ling .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) :4302-4307