Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: Advances, challenges and prospects

被引:2
|
作者
Liu, Shile [1 ]
Liao, Yanxin [1 ]
Liu, Tianrui [1 ]
Chen, Lingyun [1 ]
Zhang, Qichun [2 ]
机构
[1] Chongqing Univ, Sch Chem & Chem Engn, Dept Appl Chem, Chongqing 401331, Peoples R China
[2] City Univ Hong Kong, Ctr Superdiamond & Adv Films COSDAF, Dept Mat Sci & Engn, Dept Chem, Hong Kong 999077, Peoples R China
关键词
Aqueous zinc ion batteries; Vanadium-based cathode; Electrochemical activation; Phase transformation; HIGH-PERFORMANCE CATHODE; LONG CYCLE LIFE; HIGH-CAPACITY; PHASE-TRANSITION; OXIDE; TRANSFORMATION; CONVERSION; ELECTRODE; NITRIDE; STORAGE;
D O I
10.1016/j.ensm.2024.103799
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite being considered as potential cathodes for aqueous zinc ion batteries (AZIBs), vanadium-based compounds still exhibit certain limitations including sluggish kinetics, inadequate electronic conductivity, structural instability, and vanadium dissolution. The electrochemical activation (ECA) strategy induced the reconstruction or transformation of vanadium-based materials into a host framework conducive to Zn2+ storage, thereby improving zinc storage performance. However, the investigation of ECA in vanadium-based materials has primarily focused on enhancing performance, while the exploration of underlying mechanisms remains inadequate. Herein, the ECA process of vanadium-based materials in AZIBs was comprehensively reviewed. The mechanism of electrochemically induced phase transformation is proposed firstly, followed by a comprehensive discussion on the impact of activation parameters, electrolyte composition, and material composition on the activation process. Subsequently, the properties of the activated vanadium-based materials to improve their electrochemical properties were analyzed. Finally, this work highlights the prevailing challenges and prospects of ECA, aiming to provide a timely summary and novel insights into the ECA of vanadium-based materials in AZIBs.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Recent Developments and Challenges of Vanadium Oxides (VxOy) Cathodes for Aqueous Zinc-Ion Batteries
    Zhou, Tao
    Han, Qing
    Xie, Lingling
    Yang, Xinli
    Zhu, Limin
    Cao, Xiaoyu
    CHEMICAL RECORD, 2022, 22 (04):
  • [22] Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries
    Yuhui Xu
    Gaini Zhang
    Jingqian Liu
    Jianhua Zhang
    Xiaoxue Wang
    Xiaohua Pu
    Jingjing Wang
    Cheng Yan
    Yanyan Cao
    Huijuan Yang
    Wenbin Li
    Xifei Li
    Energy & Environmental Materials, 2023, 6 (06) : 162 - 185
  • [23] Recent Advances in Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries: from Fundamentals to Practical Applications
    Zheng, Wei
    Sun, Zhong-Hui
    Gu, Zhen-Yi
    Wu, Xing-Long
    Niu, Li
    ADVANCED MATERIALS TECHNOLOGIES, 2025,
  • [24] Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries
    Xu, Yuhui
    Zhang, Gaini
    Liu, Jingqian
    Zhang, Jianhua
    Wang, Xiaoxue
    Pu, Xiaohua
    Wang, Jingjing
    Yan, Cheng
    Cao, Yanyan
    Yang, Huijuan
    Li, Wenbin
    Li, Xifei
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (06)
  • [25] Facing the capacity fading of vanadium-based zinc-ion batteries
    Xing, Zhenyue
    Xu, Guofu
    Han, Junwei
    Chen, Gen
    Lu, Bingan
    Liang, Shuquan
    Zhou, Jiang
    TRENDS IN CHEMISTRY, 2023, 5 (05): : 380 - 392
  • [26] Unleashing Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries
    Zafar, Saad
    Lochab, Bimlesh
    ACS OMEGA, 2024, 9 (49): : 47920 - 47938
  • [27] Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries
    Hu, Enze
    Li, Huifang
    Zhang, Yizhou
    Wang, Xiaojun
    Liu, Zhiming
    ENERGIES, 2023, 16 (02)
  • [28] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648
  • [29] Toward Low-Temperature Zinc-Ion Batteries: Strategy, Progress, and Prospect in Vanadium-Based Cathodes
    Jia, Lujie
    Hu, Hongfei
    Cheng, Xiaomin
    Dong, Hao
    Li, Huihua
    Zhang, Yongzheng
    Zhang, Huang
    Zhao, Xinyu
    Li, Canhuang
    Zhang, Jing
    Lin, Hongzhen
    Wang, Jian
    ADVANCED ENERGY MATERIALS, 2024, 14 (08)
  • [30] A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries
    Lin Gou
    Wentao Zhao
    Huan Li
    Xingjiang Liu
    Qiang Xu
    Journal of Solid State Electrochemistry, 2024, 28 : 113 - 123