An economic and CO2 assessment of using Fischer-Tropsch diesel in the European maritime sector

被引:1
|
作者
dos Santos V.A. [1 ,2 ]
da Silva P.P. [1 ,3 ,4 ,5 ]
Ventura Serrano L.M. [6 ,7 ]
机构
[1] Sustainable Energy Systems, MIT-Portugal, The Energy for Sustainability, Initiative (EFS), Department of Mechanical Engineering, University of Coimbra, Coimbra
[2] Chemical Process Engineering and Forest Products Research Centre (CIEPQPF)—Chemical Engineering Department, University of Coimbra, Coimbra
[3] Centre for Business and Economic Research (CeBER), University of Coimbra, Coimbra
[4] Faculty of Economics, University of Coimbra, Coimbra
[5] Department of the Faculty of Sciences and Technology, INESC-Coimbra and Energy for Sustainability Initiative, University of Coimbra, Coimbra
[6] School of Technology and Management, Polytechnic of Leiria, Leiria
[7] ADAI, Department of Mechanical Engineering, University of Coimbra, Coimbra
关键词
Biomass; Fischer-Tropsch; maritime sector;
D O I
10.1080/00207233.2022.2157633
中图分类号
学科分类号
摘要
This study examines FischerTropsch Diesel as a source of decarbonisation by use of lignocellulosic residues (wheat, barley, and maize) contributing to the European maritime sector. A techno-economic methodology from the literature and well-to-tank analyses were used to calculate the production, cost, and carbon emissions of the fuel. By exploiting an area of 23.27 million hectares, nine countries could potentially produce 4.9 million tonnes of renewable diesel annually, to be distributed to their respective ports. That amount could eliminate 8.4% of the current CO2 emissions of the sector in Europe, at a cost ranging from 51.20 to 68.69 €/GJ. The study includes a sensitivity analysis of biomass, electricity, interest rate, and sub-product cost variables, as well as blend variation (1–100%) with the current marine fossil fuel used, with a cost of CO2 saved varying between 678.46–1,457.86 €/tCO2. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:1529 / 1562
相关论文
共 50 条
  • [1] Combinations of CO/CO2 reactions with Fischer-Tropsch synthesis
    Iglesias, M.
    Edzang, R.
    Schaub, G.
    CATALYSIS TODAY, 2013, 215 : 194 - 200
  • [2] Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases:: the episodes of formation of the Fischer-Tropsch regime and construction of the catalyst
    Riedel, T
    Schulz, H
    Schaub, G
    Jun, KW
    Hwang, JS
    Lee, KW
    TOPICS IN CATALYSIS, 2003, 26 (1-4) : 41 - 54
  • [3] Life Cycle Assessment of Petroleum Coke Gasification to Fischer-Tropsch Diesel
    Okeke, Ikenna J.
    Adams, Thomas A., II
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1495 - 1500
  • [4] Fischer-Tropsch Synthesis in supercritical Co2 - Inhibition of Co2 selectivity for enhanced hydrocarbon production
    Benoit, Jeremiah
    Perry, Derek
    Mondal, Kanchan
    FUEL, 2017, 209 : 383 - 393
  • [5] Pressure swing adsorption for CO2 capture in Fischer-Tropsch fuels production from biomass
    Ana M. Ribeiro
    João C. Santos
    Alírio E. Rodrigues
    Adsorption, 2011, 17 : 443 - 452
  • [6] Pressure swing adsorption for CO2 capture in Fischer-Tropsch fuels production from biomass
    Ribeiro, Ana M.
    Santos, Joao C.
    Rodrigues, Alirio E.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (03): : 443 - 452
  • [7] Incentivizing wood-based Fischer-Tropsch diesel through financial policy instruments: An economic assessment for Norway
    Bright, Ryan M.
    Stromman, Anders H.
    ENERGY POLICY, 2010, 38 (11) : 6849 - 6859
  • [8] CO2 from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and economic analysis
    Marchese, Marco
    Buffo, Giulio
    Santarelli, Massimo
    Lanzini, Andrea
    JOURNAL OF CO2 UTILIZATION, 2021, 46
  • [9] Recovery and usage of CO2 produced in the Fischer-Tropsch synthesis employing Gibbs energy minimization
    Marques, Fernando Henrique
    Guirardello, Reginaldo
    FLUID PHASE EQUILIBRIA, 2020, 522
  • [10] Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding
    Rafati, Mohammad
    Wang, Lijun
    Dayton, David C.
    Schimmel, Keith
    Kabadi, Vinayak
    Shahbazi, Abolghasem
    ENERGY CONVERSION AND MANAGEMENT, 2017, 133 : 153 - 166