Effect of AlCoCrFeNi High-Entropy Alloy on Microstructure and Mechanical Properties of Al-Si-Cu Alloy

被引:1
|
作者
Wu, Qingjie [1 ]
Guo, Zhenghua [1 ]
Huang, Qin [2 ]
Lingli, Shibao [3 ]
机构
[1] Nanchang Hangkong Univ, Sch Aeronaut Mfg Engn, Nanchang 330036, Peoples R China
[2] Jiangxi Isuzu Motors Co Ltd, Technol R&D Dept, Nanchang 330010, Peoples R China
[3] Jiashan Xinhai Precis Casting Co Ltd, Jiaxing 314101, Peoples R China
关键词
high-entropy alloy (HEA); ADC12; alloy; aluminum matrix composites (AMCs); mechanical properties; ALUMINUM; BEHAVIOR;
D O I
10.12442/j.issn.1002-185X.20240073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloy (HEA), as a class of new alloy materials characterized by high stability, excellent specific strength and corrosion resistance, has attracted much attention in the field of aluminum matrix composites (AMCs). To study the effect on microstructure and mechanical properties of aluminum alloys, AlCoCrFeNi HEA particles reinforced ADC12 composites were fabricated by high energy ultrasonic casting process. Subsequently, the effect of HEAs addition on the microstructure and mechanical properties of ADC12 alloys was investigated. Results show that the added HEA particles are tightly bonded to the aluminum matrix. The Al2Cu phase in the matrix is refined. Meanwhile, the tensile strength and microhardness of the alloys with the addition of HEA particles are significantly improved. The yield strength and ultimate tensile strength of as-prepared composites with 12wt% HEAs are increased by 16.9% and 21.9% compared with those of the matrix, respectively. The wear rate of the composites is also decreased due to the enhancement of microhardness under applied load of 20 N. It is mainly attributed to the load transfer strengthening, dislocation proliferation and the optimization of the microstructure.
引用
收藏
页码:3017 / 3025
页数:9
相关论文
共 50 条
  • [21] The microstructure and mechanical properties of the additive manufactured AlCoCrFeNi high entropy alloy
    Sui, Qingxuan
    Wang, Zhen
    Wang, Jiang
    Xu, Shurong
    Zhao, Fengjun
    Gong, Le
    Liu, Bo
    Liu, Jun
    Liu, Gang
    Materials Science and Engineering: A, 2022, 833
  • [22] Cooling Rate and Size Effect on the Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy
    Wang, F. J.
    Zhang, Y.
    Chen, G. L.
    Davies, H. A.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (03):
  • [23] Effect of Nb and Ti additions on microstructure, hardness and wear properties of AlCoCrFeNi high-entropy alloy
    Dalan, Filipe Caldatto
    Sobrinho, Argemiro Soares Da Silva
    Nishihora, Rafael Kenji
    Santos, Sydney Ferreira
    Martins, Gislene Valdete
    Cardoso, Katia Regina
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [24] The Effect of Zirconium on the Microstructure and Properties of Cast AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Li, Rongbin
    Sun, Weichu
    Li, Saiya
    Cheng, Zhijun
    MATERIALS, 2024, 17 (23)
  • [25] Effect of Boronizing on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy
    Hu, Mingyu
    Ouyang, Xuemei
    Yin, Fucheng
    Zhao, Xu
    Zhang, Zuchuan
    Wang, Xinming
    MATERIALS, 2023, 16 (10)
  • [26] Effect of Nb and Ti additions on microstructure, hardness and wear properties of AlCoCrFeNi high-entropy alloy
    Dalan, Filipe Caldatto (caldatto.filipe@gmail.com), 1600, Elsevier Ltd (1010):
  • [27] Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy
    Yang, Tengfei
    Xia, Songqin
    Liu, Shi
    Wang, Chenxu
    Liu, Shaoshuai
    Zhang, Yong
    Xue, Jianming
    Yan, Sha
    Wang, Yugang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 648 : 15 - 22
  • [28] Effect of Mn addition on microstructure and corrosion behavior of AlCoCrFeNi high-entropy alloy
    Zhang, Dandan
    Li, Qiang
    Sun, Rongze
    Chang, Chuntao
    Liu, Bin
    Ma, Xu
    INTERMETALLICS, 2024, 167
  • [29] Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy
    Uporov, S.
    Bykov, V.
    Pryanichnikov, S.
    Shubin, A.
    Uporova, N.
    INTERMETALLICS, 2017, 83 : 1 - 8
  • [30] Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication
    Wang, Rui
    Zhang, Kai
    Davies, Christopher
    Wu, Xinhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 : 971 - 981