Real-Time Monitoring of Road Networks for Pavement Damage Detection Based on Preprocessing and Neural Networks

被引:0
|
作者
Shakhovska, Nataliya [1 ,2 ,3 ]
Yakovyna, Vitaliy [4 ]
Mysak, Maksym [1 ]
Mitoulis, Stergios-Aristoteles [3 ,5 ]
Argyroudis, Sotirios [2 ,3 ]
Syerov, Yuriy [6 ,7 ]
机构
[1] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79905 Lvov, Ukraine
[2] Brunel Univ London, Dept Civil & Environm Engn, Uxbridge UB8 3PH, England
[3] MetaInfrastructure Org, Birmingham NW11 7HQ, England
[4] Univ Warmia & Mazury, Fac Math & Comp Sci, Ul Oczapowskiego 2, PL-10719 Olsztyn, Poland
[5] Univ Birmingham, Sch Engn, Dept Civil Engn, Birmingham B15 2TT, England
[6] Lviv Polytech Natl Univ, Social Commun & Informat Act Dept, UA-79013 Lvov, Ukraine
[7] Comenius Univ, Dept Informat Management & Business Syst, Bratislava 82005, Slovakia
基金
新加坡国家研究基金会;
关键词
pavement; damage detection; convolutional neural network; YOLO architecture; machine learning; classification; neural networks; data preprocessing; CLASSIFICATION;
D O I
10.3390/bdcc8100136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel multi-initialization model for recognizing road surface damage, e.g. potholes and cracks, on video using convolutional neural networks (CNNs) in real-time for fast damage recognition. The model is trained by the latest Road Damage Detection dataset, which includes four types of road damage. In addition, the CNN model is updated using pseudo-labeled images from semi-learned methods to improve the performance of the pavement damage detection technique. This study describes the use of the YOLO architecture and optimizes it according to the selected parameters, demonstrating high efficiency and accuracy. The results obtained can enhance the safety and efficiency of road pavement and, hence, its traffic quality and contribute to decision-making for the maintenance and restoration of road infrastructure.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Real-time surgical needle detection using region-based convolutional neural networks
    Atsushi Nakazawa
    Kanako Harada
    Mamoru Mitsuishi
    Pierre Jannin
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 41 - 47
  • [32] Road damage detection and classification using deep neural networks
    Jiang, Yiwen
    DISCOVER APPLIED SCIENCES, 2024, 6 (08)
  • [33] Performance Analysis of Real-Time Detection in Fusion-Based Sensor Networks
    Tan, Rui
    Xing, Guoliang
    Wang, Jianping
    Liu, Benyuan
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (09) : 1564 - 1577
  • [34] Using 3D Convolutional Neural Networks for Real-time Detection of Soccer Events
    Rongved, Olav A. Nergard
    Hicks, Steven A.
    Thambawita, Vajira
    Stensland, Hakon K.
    Zouganeli, Evi
    Johansen, Dag
    Midoglu, Cise
    Riegler, Michael A.
    Halvorsen, Pal
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 161 - 187
  • [35] Real-Time Object Detection for AUVs Using Self-Cascaded Convolutional Neural Networks
    Song, Yan
    He, Bo
    Liu, Peng
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2021, 46 (01) : 56 - 67
  • [36] Real-time surgical needle detection using region-based convolutional neural networks
    Nakazawa, Atsushi
    Harada, Kanako
    Mitsuishi, Mamoru
    Jannin, Pierre
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (01) : 41 - 47
  • [37] Real-Time Marker-Based Finger Tracking with Neural Networks
    Pavllo, Dario
    Porssut, Thibault
    Herbelin, Bruno
    Boulic, Ronan
    25TH 2018 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES (VR), 2018, : 651 - 652
  • [38] Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks
    Nizar, Muhammad Hanif Ahmad
    Chan, Chow Khuen
    Khalil, Azira
    Yusof, Ahmad Khairuddin Mohamed
    Lai, Khin Wee
    CURRENT MEDICAL IMAGING, 2020, 16 (05) : 584 - 591
  • [39] Drowsiness detection in real-time via convolutional neural networks and transfer learning
    Salem, Dina
    Waleed, Mohamed
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [40] Real-time fire detection system based on dynamic time warping of multichannel sensor networks
    Baek, Jaeseung
    Alhindi, Taha J.
    Jeong, Young-Seon
    Jeong, Myong K.
    Seo, Seongho
    Kang, Jongseok
    Shim, We
    Heo, Yoseob
    FIRE SAFETY JOURNAL, 2021, 123