Real-Time Monitoring of Road Networks for Pavement Damage Detection Based on Preprocessing and Neural Networks

被引:2
作者
Shakhovska, Nataliya [1 ,2 ,3 ]
Yakovyna, Vitaliy [4 ]
Mysak, Maksym [1 ]
Mitoulis, Stergios-Aristoteles [3 ,5 ]
Argyroudis, Sotirios [2 ,3 ]
Syerov, Yuriy [6 ,7 ]
机构
[1] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79905 Lvov, Ukraine
[2] Brunel Univ London, Dept Civil & Environm Engn, Uxbridge UB8 3PH, England
[3] MetaInfrastructure Org, Birmingham NW11 7HQ, England
[4] Univ Warmia & Mazury, Fac Math & Comp Sci, Ul Oczapowskiego 2, PL-10719 Olsztyn, Poland
[5] Univ Birmingham, Sch Engn, Dept Civil Engn, Birmingham B15 2TT, England
[6] Lviv Polytech Natl Univ, Social Commun & Informat Act Dept, UA-79013 Lvov, Ukraine
[7] Comenius Univ, Dept Informat Management & Business Syst, Bratislava 82005, Slovakia
基金
新加坡国家研究基金会;
关键词
pavement; damage detection; convolutional neural network; YOLO architecture; machine learning; classification; neural networks; data preprocessing; CLASSIFICATION;
D O I
10.3390/bdcc8100136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel multi-initialization model for recognizing road surface damage, e.g. potholes and cracks, on video using convolutional neural networks (CNNs) in real-time for fast damage recognition. The model is trained by the latest Road Damage Detection dataset, which includes four types of road damage. In addition, the CNN model is updated using pseudo-labeled images from semi-learned methods to improve the performance of the pavement damage detection technique. This study describes the use of the YOLO architecture and optimizes it according to the selected parameters, demonstrating high efficiency and accuracy. The results obtained can enhance the safety and efficiency of road pavement and, hence, its traffic quality and contribute to decision-making for the maintenance and restoration of road infrastructure.
引用
收藏
页数:22
相关论文
共 35 条
[1]  
Adarsh P, 2020, INT CONF ADVAN COMPU, P687, DOI [10.1109/ICACCS48705.2020.9074315, 10.1109/icaccs48705.2020.9074315]
[2]  
Al Bayati M.A.Z., 2023, Int. J. Image Graph. Signal Process, V15, P17, DOI [10.5815/ijigsp.2023.05.02, DOI 10.5815/IJIGSP.2023.05.02]
[3]   Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures [J].
Ali, Luqman ;
Alnajjar, Fady ;
Al Jassmi, Hamad ;
Gocho, Munkhjargal ;
Khan, Wasif ;
Serhani, M. Adel .
SENSORS, 2021, 21 (05) :1-22
[4]   Digital technologies can enhance climate resilience of critical infrastructure [J].
Argyroudis, Sotirios A. ;
Aristotels Mitoulis, Stergios ;
Chatzi, Eleni W. ;
Baker, Jack W. ;
Brilakis, Ioannis ;
Gkoumas, Konstantinos ;
Vousdoukas, Michalis ;
Hynes, William ;
Carluccio, Savina ;
Keou, Oceane ;
Frangopol, Dan M. ;
Linkov, Igor .
CLIMATE RISK MANAGEMENT, 2022, 35
[5]   RDD2020: An annotated image dataset for automatic road damage detection using deep learning [J].
Arya, Deeksha ;
Maeda, Hiroya ;
Ghosh, Sanjay Kumar ;
Toshniwal, Durga ;
Sekimoto, Yoshihide .
DATA IN BRIEF, 2021, 36
[6]   Computer Vision Based Pothole Detection under Challenging Conditions [J].
Bucko, Boris ;
Lieskovska, Eva ;
Zabovska, Katarina ;
Zabovsky, Michal .
SENSORS, 2022, 22 (22)
[7]   NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naive Bayes Data Fusion [J].
Chen, Fu-Chen ;
Jahanshahi, Mohammad R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (05) :4392-4400
[8]   Road Damage Detection using Deep Ensemble Learning [J].
Doshi, Keval ;
Yilmaz, Yasin .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :5540-5544
[9]   Pavement distress detection and classification based on YOLO network [J].
Du, Yuchuan ;
Pan, Ning ;
Xu, Zihao ;
Deng, Fuwen ;
Shen, Yu ;
Kang, Hua .
INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2021, 22 (13) :1659-1672
[10]  
Fedushko Solomiia, 2024, Data-Centric Business and Applications: Advancements in Information and Knowledge Management. Lecture Notes on Data Engineering and Communications Technologies (208), P165, DOI 10.1007/978-3-031-59131-0_8