Intelligent Cross-Working Condition Fault Detection and Diagnosis Using Isolation Forest and Adversarial Discriminant Domain Adaptation

被引:0
|
作者
Lv, Yaqiong [1 ]
Guo, Xiaoling [1 ]
Shirmohammadi, Shervin [2 ]
Qian, Lu [1 ]
Gong, Yi [3 ]
Hu, Xinjue [4 ,5 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[3] Beijing Informat Sci & Technol Univ, Sch Informat & Commun Engn, Beijing 100192, Peoples R China
[4] Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[5] Hubei East Lake Lab, Wuhan 420202, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Fault detection; Data models; Adaptation models; Training; Accuracy; Adversarial training; domain adaptation (DA); fault detection; fault diagnosis; machine learning; IDENTIFICATION;
D O I
10.1109/TIM.2024.3457923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing complexity and varying operational conditions of today's rotating machinery present significant challenges for automated fault diagnosis. While data-driven fault diagnosis methods have grown in popularity, they often rely heavily on full-cycle data, making them resource-intensive and less adaptive to diverse working conditions. Addressing this gap, our proposed system avoids the dependence on full-cycle data, employing an efficient two-stage methodology. In the initial stage, an isolation forest (iForest) module operates in an unsupervised mode, isolating operational anomalies indicative of potential faults. These identified anomalies are then channeled into the second stage, where a adversarial discriminant domain adaptation (ADDA) module performs an in-depth fault diagnosis. By streamlining the diagnostic process, our approach not only accelerates fault identification but also reduces the reliance on extensive datasets that are often a staple in conventional diagnostics. Performance evaluations with the XJTU-SY and CWRU bearing datasets show that our system reaches an accuracy of 95.67%, affirming its superiority as a cost-efficient, data-lean solution in machinery fault diagnostics.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A cross-domain intelligent fault diagnosis method based on feature transfer with improved Inception ResNet for rolling bearings under varying working condition
    Tian, Jiaqi
    Gu, Bin
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2024, 18 (02):
  • [42] An Unsupervised Domain Adaptation Method for Intelligent Bearing Fault Diagnosis Based on Signal Reconstruction by Cycle-Consistent Adversarial Learning
    Zhu, Wenying
    Shi, Boqiang
    Feng, Zhipeng
    Tang, Jiachen
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18477 - 18485
  • [43] A new cross-domain approach for bearing fault diagnosis based on multiscale convolutional networks and adversarial subdomain adaptation
    Sun, Haibin
    Zhu, Weilong
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [44] Data-Driven Intelligent Condition Adaptation of Feature Extraction for Bearing Fault Detection Using Deep Responsible Active Learning
    Mahesh, T. R.
    Chandrasekaran, Saravanan
    Ram, V. Ashwin
    Kumar, V. Vinoth
    Vivek, V.
    Guluwadi, Suresh
    IEEE ACCESS, 2024, 12 : 45381 - 45397
  • [45] A novel meta-learning network with adversarial domain-adaptation and attention mechanism for cross-domain for train bearing fault diagnosis
    Zhong, Hao
    He, Deqiang
    Wei, Zexian
    Jin, Zhenzhen
    Lao, Zhenpeng
    Xiang, Zaiyu
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [46] Few-Shot Learning-Based Fault Diagnosis Using Prototypical Contrastive-Based Domain Adaptation Under Variable Working Conditions
    An, Yiyao
    Li, Zhaofei
    Li, Yuanyuan
    Zhang, Ke
    Zhu, Zhiqin
    Chai, Yi
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 25019 - 25029
  • [47] Interactive dual adversarial neural network framework: An open-set domain adaptation intelligent fault diagnosis method of rotating machinery
    Mao, Gang
    Li, Yongbo
    Jia, Sixiang
    Noman, Khandaker
    MEASUREMENT, 2022, 195
  • [48] A higher-order moment matching based fine-grained adversarial domain adaptation method for intelligent bearing fault diagnosis
    Wang, Rui
    Huang, Weiguo
    Shi, Juanjuan
    Wang, Jun
    Shen, Changqing
    Zhu, Zhongkui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [49] Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions
    Li, Qi
    Shen, Changqing
    Chen, Liang
    Zhu, Zhongkui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 147
  • [50] Intelligent fault diagnosis under imbalanced multivariate working conditions leveraging dynamic unsupervised domain adaptation with sample and margin regularization
    Li, Zipeng
    Liu, Xuan
    Zhang, Kaiyu
    Li, Chao
    Chen, Jinglong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)