Intelligent Cross-Working Condition Fault Detection and Diagnosis Using Isolation Forest and Adversarial Discriminant Domain Adaptation

被引:0
|
作者
Lv, Yaqiong [1 ]
Guo, Xiaoling [1 ]
Shirmohammadi, Shervin [2 ]
Qian, Lu [1 ]
Gong, Yi [3 ]
Hu, Xinjue [4 ,5 ]
机构
[1] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[3] Beijing Informat Sci & Technol Univ, Sch Informat & Commun Engn, Beijing 100192, Peoples R China
[4] Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[5] Hubei East Lake Lab, Wuhan 420202, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Feature extraction; Fault detection; Data models; Adaptation models; Training; Accuracy; Adversarial training; domain adaptation (DA); fault detection; fault diagnosis; machine learning; IDENTIFICATION;
D O I
10.1109/TIM.2024.3457923
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing complexity and varying operational conditions of today's rotating machinery present significant challenges for automated fault diagnosis. While data-driven fault diagnosis methods have grown in popularity, they often rely heavily on full-cycle data, making them resource-intensive and less adaptive to diverse working conditions. Addressing this gap, our proposed system avoids the dependence on full-cycle data, employing an efficient two-stage methodology. In the initial stage, an isolation forest (iForest) module operates in an unsupervised mode, isolating operational anomalies indicative of potential faults. These identified anomalies are then channeled into the second stage, where a adversarial discriminant domain adaptation (ADDA) module performs an in-depth fault diagnosis. By streamlining the diagnostic process, our approach not only accelerates fault identification but also reduces the reliance on extensive datasets that are often a staple in conventional diagnostics. Performance evaluations with the XJTU-SY and CWRU bearing datasets show that our system reaches an accuracy of 95.67%, affirming its superiority as a cost-efficient, data-lean solution in machinery fault diagnostics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] CROSS-WORKING CONDITIONS FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON PARTIAL DOMAIN ADAPTATION
    Ma T.
    Sun L.
    Han B.
    Shi Y.
    Deng A.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 479 - 486
  • [2] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] Discrepant Adversarial Domain Adaptation Network for Rolling Bearing Intelligent Fault Diagnosis under Varying Working Condition
    Zheng, Kai
    Zhao, Pengyuan
    Xiong, Jinfeng
    Bai, Yin
    Li, Yongying
    Long, Zihao
    Zhang, Zheng
    ENGINEERING LETTERS, 2025, 33 (04) : 860 - 875
  • [4] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] A Stacked Auto-Encoder Based Partial Adversarial Domain Adaptation Model for Intelligent Fault Diagnosis of Rotating Machines
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Wang, Chang-Tong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (10) : 6798 - 6809
  • [6] Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation
    Xia, Bingjie
    Wang, Kai
    Xu, Aidong
    Zeng, Peng
    Yang, Nan
    Li, Bangyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] A Balanced Adversarial Domain Adaptation Method for Partial Transfer Intelligent Fault Diagnosis
    Wang, Yu
    Liu, Yanxu
    Chow, Tommy W. S.
    Gu, Junwei
    Zhang, Mingquan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] Domain Adaptation Network with Double Adversarial Mechanism for Intelligent Fault Diagnosis
    Xu, Kun
    Li, Shunming
    Li, Ranran
    Lu, Jiantao
    Li, Xianglian
    Zeng, Mengjie
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [9] Fusion Domain-Adaptation CNN Driven by Images and Vibration Signals for Fault Diagnosis of Gearbox Cross-Working Conditions
    Mao, Gang
    Zhang, Zhongzheng
    Qiao, Bin
    Li, Yongbo
    ENTROPY, 2022, 24 (01)
  • [10] Adversarial domain adaptation with classifier alignment for cross-domain intelligent fault diagnosis of multiple source domains
    Zhang, Yongchao
    Ren, Zhaohui
    Zhou, Shihua
    Yu, Tianzhuang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (03)