Quantum algorithm for dynamic mode decomposition integrated with a quantum differential equation solver

被引:2
作者
Mizuno, Yuta [1 ,2 ,3 ]
Komatsuzaki, Tamiki [1 ,2 ,3 ,4 ]
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[2] Hokkaido Univ, Inst Chem React Design & Discovery WPI ICReDD, Sapporo, Hokkaido 0010021, Japan
[3] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[4] Osaka Univ, SANKEN, Osaka, Ibaraki 5670047, Japan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
RESONANCE ENERGIES; COMPUTATION; SCATTERING; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.043031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum algorithm that analyzes time series data simulated by a quantum differential equation solver. The proposed algorithm is a quantum version of a dynamic mode decomposition algorithm used in diverse fields such as fluid dynamics, molecular dynamics, and epidemiology. Our quantum algorithm can also compute matrix eigenvalues and eigenvectors by analyzing the corresponding linear dynamical system. Our algorithm handles a broad range of matrices, particularly those with complex eigenvalues. The complexity of our quantum algorithm is O (poly log N ) for an N-dimensional system. This is an exponential speedup over known classical algorithms with at least O ( N ) complexity. Thus, our quantum algorithm is expected to enable high-dimensional dynamical systems analysis and large matrix eigenvalue decomposition, intractable for classical computers.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors
    Abrams, DS
    Lloyd, S
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (24) : 5162 - 5165
  • [2] [Anonymous], About us, DOI [10.1103/PhysRevResearch.6.043031, DOI 10.1103/PHYSREVRESEARCH.6.043031]
  • [3] Simulated quantum computation of molecular energies
    Aspuru-Guzik, A
    Dutoi, AD
    Love, PJ
    Head-Gordon, M
    [J]. SCIENCE, 2005, 309 (5741) : 1704 - 1707
  • [4] Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision
    Berry, Dominic W.
    Childs, Andrew M.
    Ostrander, Aaron
    Wang, Guoming
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 1057 - 1081
  • [5] High-order quantum algorithm for solving linear differential equations
    Berry, Dominic W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (10)
  • [6] Brayton RK., 1963, JMath Anal Appl, V7, P31, DOI [DOI 10.1016/0022-247X(63)90076-3, 10.1016/0022-247X(63)90076-3]
  • [7] Modern Koopman Theory for Dynamical Systems
    Brunton, Steven L.
    Budisic, Marko
    Kaiser, Eurika
    Kutz, J. Nathan
    [J]. SIAM REVIEW, 2022, 64 (02) : 229 - 340
  • [8] Quantum Spectral Methods for Differential Equations
    Childs, Andrew M.
    Liu, Jin-Peng
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (02) : 1427 - 1457
  • [9] QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION
    Childs, Andrew M.
    Kothari, Robin
    Somma, Rolando D.
    [J]. SIAM JOURNAL ON COMPUTING, 2017, 46 (06) : 1920 - 1950
  • [10] Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI [10.1098/rspa.1998.0164, 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO