Analysis of mapping atomic models to coarse-grained resolution

被引:1
|
作者
Kidder, Katherine M. [1 ]
Noid, W. G. [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 13期
基金
美国国家科学基金会;
关键词
BIOMOLECULAR COMPLEXES; DYNAMICS; PROTEINS; REPRESENTATIONS; INFORMATION; PERSPECTIVE; SITES; REDUCTION; SCHEMES; ACTIN;
D O I
10.1063/5.0220989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, I-map(M), that results from the mapping.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Folding and design in coarse-grained protein models
    Peterson, C
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 712 - 714
  • [42] Coarse-grained models and simulations of bilayer membranes
    Stevens, MJ
    Hoh, J
    Woolf, T
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 542A - 542A
  • [43] Development and Applications of Coarse-Grained Models for RNA
    Hyeon, Changbong
    Denesyuk, Natalia A.
    Thirumalai, D.
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (8-9) : 1358 - 1373
  • [44] Thermodynamics of coarse-grained models of supercooled liquids
    Chandler, D
    Garrahan, JP
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04):
  • [45] Evidence of information limitations in coarse-grained models
    Khot, Aditi
    Shiring, Stephen B.
    Savoie, Brett M.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):
  • [46] Transferable Coarse-Grained Models for Ionic Liquids
    Wang, Yanting
    Feng, Shulu
    Voth, Gregory A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) : 1091 - 1098
  • [47] Coarse-Grained Models for Complex Coacervation in Chromatin
    Lebold, Kathryn M.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 225A - 226A
  • [48] Folding Coarse-Grained Oligomer Models with PyRosetta
    Fobe, Theodore L.
    Walker, Christopher C.
    Meek, Garrett A.
    Shirts, Michael R.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (10) : 6354 - 6369
  • [49] MARTINI Coarse-Grained Models of Polyethylene and Polypropylene
    Panizon, Emanuele
    Bochicchio, Davide
    Monticelli, Luca
    Rossi, Giulia
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (25): : 8209 - 8216
  • [50] Perspective: Coarse-grained models for biomolecular systems
    Noid, W. G.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (09):