A neuromorphic radial-basis-function net using magnetic bits for time series prediction

被引:0
|
作者
Qin, Hening [1 ]
Liao, Zhiqiang [1 ,2 ]
Tabata, Hitoshi [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Elect Engn & Informat Syst, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Grad Sch Engn, Dept Bioengn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
关键词
Magnetic tunnel junctions; Radial basis function; Time series prediction; Temperature effect; SHORT-TERM-MEMORY;
D O I
10.1016/j.rineng.2024.103371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic tunnel junctions (MTJs) are considered strong candidates for constructing neuromorphic systems owing to their low power consumption and high integrability. However, research on MTJ-based local approximation network is still lacking. In this work, we propose an MTJ-based radial basis function (RBF) network and numerically investigate its time-series prediction capability. The results demonstrate that the MTJ-based RBF network can enhance its prediction performance by utilizing increased environmental temperatures, achieving performance better than traditional software artificial neural networks.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Prediction of Wastewater sludge recycle performance using Radial Basis Function Neural Network
    Luolong
    Luofei
    Zhouliyou
    Zhenghui
    Xuyuge
    2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 319 - 321
  • [22] Reservoir rock permeability prediction using SVR based on radial basis function kernel
    Majid Bagheri
    Hadi Rezaei
    Carbonates and Evaporites, 2019, 34 : 699 - 707
  • [23] PHOTOVOLTAIC MAXIMUM POWER POINT PREDICTION USING ROBUST RADIAL BASIS FUNCTION NETWORK
    Liao, Chiung-Chou
    POWER CONTROL AND OPTIMIZATION, PROCEEDINGS, 2009, 1159 : 97 - 102
  • [24] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Wu, Xiong-Jun
    Jiang, Guan-Cheng
    Wang, Xiao-Jun
    Fang, Na
    Zhao, Lin
    Ma, Ying-Min
    Luo, Shao-Jie
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (05) : 947 - 953
  • [25] Prediction of pore-water pressure using radial basis function neural network
    Mustafa, M. R.
    Rezaur, R. B.
    Rahardjo, H.
    Isa, M. H.
    ENGINEERING GEOLOGY, 2012, 135 : 40 - 47
  • [26] Reservoir rock permeability prediction using SVR based on radial basis function kernel
    Bagheri, Majid
    Rezaei, Hadi
    CARBONATES AND EVAPORITES, 2019, 34 (03) : 699 - 707
  • [27] Machine Learning for Myocardial Infarction Prediction using Radial Basis Function and Genetic Algorithms
    Bharathi, Pon A.
    Raja, Siva P. M.
    Nandhakumar, A.
    Anandaram, Harishchander
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1189 - 1193
  • [28] Floods Prediction Using Radial Basis Function (RBF) Based on Internet of Things (IoT)
    Kartika, Ni Komang Ega
    Murti, Muhammad Ary
    Setianingsih, Casi
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRY 4.0, ARTIFICIAL INTELLIGENCE, AND COMMUNICATIONS TECHNOLOGY (IAICT), 2019, : 125 - 128
  • [29] Prediction of reservoir sensitivity using RBF neural network with trainable radial basis function
    Xiong-Jun Wu
    Guan-Cheng Jiang
    Xiao-Jun Wang
    Na Fang
    Lin Zhao
    Ying-Min Ma
    Shao-Jie Luo
    Neural Computing and Applications, 2013, 22 : 947 - 953
  • [30] Prediction of Soil Nitrogen Content using E-nose and Radial Basis Function
    Norbu, Jigme
    Pobkrut, Theerapat
    Thepudom, Treenet
    Namgyel, Thinley
    Chaiyasit, Teerayut
    Thazin, Yu
    Kerdcharoen, Teerakiat
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 313 - 316