LIC: An R package for optimal subset selection for distributed data

被引:0
作者
Chang, Di [1 ]
Guo, Guangbao [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo, Peoples R China
关键词
R package; Optimal subset selection; Redundant information; Parallel computing; REGRESSION;
D O I
10.1016/j.softx.2024.101909
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the Length and Information Optimization Criterion (LIC) is to handle datasets containing redundant information, identify and select the most informative subsets, and ensure that a large portion of the information from the dataset is retained. The proposed R package, called LIC, is specifically designed for optimal subset selection in distributed redundant data. It achieves this by minimizing the length of the final interval estimator while maximizing the amount of information retained from the selected data subset. This functionality is highly useful across various fields such as economics, industry, and medicine. For example, in studies involving the prediction of nitrogen oxide emissions from gas turbines, self-noise of airfoils under stochastic wind conditions, and real estate valuation predictions, LIC can be used to explore the performance of random distributed block methods in parallel computing environments.
引用
收藏
页数:7
相关论文
共 50 条
[41]   A Simple-to-Use R Package for Mimicking Study Data by Simulations [J].
Koliopanos, Giorgos ;
Ojeda, Francisco ;
Ziegler, Andreas .
METHODS OF INFORMATION IN MEDICINE, 2023, 62 (03/04) :119-129
[42]   Monitoring ecosystem degradation using spatial data and the R package spatialwarnings [J].
Genin, Alexandre ;
Majumder, Sabiha ;
Sankaran, Sumithra ;
Danet, Alain ;
Guttal, Vishwesha ;
Schneider, Florian D. ;
Kefi, Sonia .
METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (10) :2067-2075
[43]   pcr: an R package for quality assessment, analysis and testing of qPCR data [J].
Ahmed, Mahmoud ;
Kim, Deok Ryong .
PEERJ, 2018, 6
[44]   Update to ttprocessing: the R-package to handle the TreeTalker monitoring data [J].
Kabala, J. P. ;
Niccoli, F. ;
Battipaglia, G. .
DENDROCHRONOLOGIA, 2024, 84
[45]   tigeR: Tumor immunotherapy gene expression data analysis R package [J].
Chen, Yihao ;
He, Li-Na ;
Zhang, Yuanzhe ;
Gong, Jingru ;
Xu, Shuangbin ;
Shu, Yuelong ;
Zhang, Di ;
Yu, Guangchuang ;
Zuo, Zhixiang .
IMETA, 2024, 3 (05)
[46]   sdtlu: An R package for the signal detection analysis of eyewitness lineup data [J].
Andrew L. Cohen ;
Jeffrey J. Starns ;
Caren M. Rotello .
Behavior Research Methods, 2021, 53 :278-300
[47]   Nbclust: An R Package for Determining the Relevant Number of Clusters in a Data Set [J].
Charrad, Malika ;
Ghazzali, Nadia ;
Boiteau, Veronique ;
Niknafs, Azam .
JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (06) :1-36
[48]   sdtlu: An R package for the signal detection analysis of eyewitness lineup data [J].
Cohen, Andrew L. ;
Starns, Jeffrey J. ;
Rotello, Caren M. .
BEHAVIOR RESEARCH METHODS, 2021, 53 (01) :278-300
[49]   Spatial entropy for biodiversity and environmental data: The R-package SpatEntropy [J].
Altieri, Linda ;
Cocchi, Daniela ;
Roli, Giulia .
ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 144
[50]   spind: an R Package to Account for Spatial Autocorrelation in the Analysis of Lattice Data [J].
Carl, Gudrun ;
Levin, Sam C. ;
Kuehn, Ingoif .
BIODIVERSITY DATA JOURNAL, 2018, 6