LIC: An R package for optimal subset selection for distributed data

被引:0
作者
Chang, Di [1 ]
Guo, Guangbao [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo, Peoples R China
关键词
R package; Optimal subset selection; Redundant information; Parallel computing; REGRESSION;
D O I
10.1016/j.softx.2024.101909
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the Length and Information Optimization Criterion (LIC) is to handle datasets containing redundant information, identify and select the most informative subsets, and ensure that a large portion of the information from the dataset is retained. The proposed R package, called LIC, is specifically designed for optimal subset selection in distributed redundant data. It achieves this by minimizing the length of the final interval estimator while maximizing the amount of information retained from the selected data subset. This functionality is highly useful across various fields such as economics, industry, and medicine. For example, in studies involving the prediction of nitrogen oxide emissions from gas turbines, self-noise of airfoils under stochastic wind conditions, and real estate valuation predictions, LIC can be used to explore the performance of random distributed block methods in parallel computing environments.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] DepthTools: an R package for a robust analysis of gene expression data
    Torrente, Aurora
    Lopez-Pintado, Sara
    Romo, Juan
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [32] caOmicsV: an R package for visualizing multidimensional cancer genomic data
    Zhang, Hongen
    Meltzer, Paul S.
    Davis, Sean R.
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [33] A New Optimal Subset Selection Method of Partial Ambiguity Resolution for Precise Point Positioning
    Yue, Caiya
    Dang, Yamin
    Xue, Shuqiang
    Wang, Hu
    Gu, Shouzhou
    Xu, Changhui
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [34] CovSel: An R Package for Covariate Selection When Estimating Average Causal Effects
    Haggstrom, Jenny
    Persson, Emma
    Waernbaum, Ingeborg
    de Luna, Xavier
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 68 (01):
  • [35] NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection
    Zambom, Adriano Zanin
    Akritas, Michael G.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (10): : 1 - 28
  • [36] Multitrait Bayesian shrinkage and variable selection models with the BGLR-R package
    Perez-Rodriguez, Paulino
    de los Campos, Gustavo
    [J]. GENETICS, 2022, 222 (01)
  • [37] PoisNor: An R package for generation of multivariate data with Poisson and normal marginals
    Amatya, Anup
    Demirtas, Hakan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2241 - 2253
  • [38] phyloMDA: an R package for phylogeny-aware microbiome data analysis
    Liu, Tiantian
    Zhou, Chao
    Wang, Huimin
    Zhao, Hongyu
    Wang, Tao
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [39] Data Analysis with the Morse-Smale Complex: The msr Package for R
    Gerber, Samuel
    Potter, Kristin
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (02): : 1 - 22
  • [40] Filtering heart rates using data densities: The boxfilter R package
    Ruf, Thomas
    Signer, Claudio
    Arnold, Walter
    Vetter, Sebastian G.
    Bieber, Claudia
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (06): : 1016 - 1023