LIC: An R package for optimal subset selection for distributed data

被引:4
作者
Chang, Di [1 ]
Guo, Guangbao [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo, Peoples R China
关键词
R package; Optimal subset selection; Redundant information; Parallel computing; REGRESSION;
D O I
10.1016/j.softx.2024.101909
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The goal of the Length and Information Optimization Criterion (LIC) is to handle datasets containing redundant information, identify and select the most informative subsets, and ensure that a large portion of the information from the dataset is retained. The proposed R package, called LIC, is specifically designed for optimal subset selection in distributed redundant data. It achieves this by minimizing the length of the final interval estimator while maximizing the amount of information retained from the selected data subset. This functionality is highly useful across various fields such as economics, industry, and medicine. For example, in studies involving the prediction of nitrogen oxide emissions from gas turbines, self-noise of airfoils under stochastic wind conditions, and real estate valuation predictions, LIC can be used to explore the performance of random distributed block methods in parallel computing environments.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Too many candidates: Embedded covariate selection procedure for species distribution modelling with the covsel R package [J].
Adde, Antoine ;
Rey, Pierre-Louis ;
Fopp, Fabian ;
Petitpierre, Blaise ;
Schweiger, Anna K. ;
Broennimann, Olivier ;
Lehmann, Anthony ;
Zimmermann, Niklaus E. ;
Altermatt, Florian ;
Pellissier, Loic ;
Guisan, Antoine .
ECOLOGICAL INFORMATICS, 2023, 75
[22]   Comparison of an optimal regression method for climate reconstruction with the compare methods() function from the dendroTools R package [J].
Jevsenak, Jernej ;
Levanic, Tom ;
Dzeroski, Saso .
DENDROCHRONOLOGIA, 2018, 52 :96-104
[23]   image2data: An R package to turn images in data sets [J].
Caron, Pier-Olivier ;
Dufresne, Alexandre .
QUANTITATIVE METHODS FOR PSYCHOLOGY, 2022, 18 (02) :186-195
[24]   PLMIX: an R package for modelling and clustering partially ranked data [J].
Mollica, Cristina ;
Tardella, Luca .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (05) :925-959
[25]   caOmicsV: an R package for visualizing multidimensional cancer genomic data [J].
Hongen Zhang ;
Paul S. Meltzer ;
Sean R. Davis .
BMC Bioinformatics, 17
[26]   ParallelPC: An R Package for Efficient Causal Exploration in Genomic Data [J].
Thuc Duy Le ;
Xu, Taosheng ;
Liu, Lin ;
Shu, Hu ;
Hoang, Tao ;
Li, Jiuyong .
TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 :207-218
[27]   An R package for identification of outliers in environmental time series data [J].
Campulova, Martina ;
Campula, Roman ;
Holesovsky, Jan .
ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 155
[28]   'rtry': An R package to support plant trait data preprocessing [J].
Lam, Olee Hoi Ying ;
Kattge, Jens ;
Tautenhahn, Susanne ;
Boenisch, Gerhard ;
Kovach, Kyle R. ;
Townsend, Philip A. .
ECOLOGY AND EVOLUTION, 2024, 14 (05)
[29]   The rawrr R Package: Direct Access to Orbitrap Data and Beyond [J].
Kockmann, Tobias ;
Panse, Christian .
JOURNAL OF PROTEOME RESEARCH, 2021, 20 (04) :2028-2034
[30]   DepthTools: an R package for a robust analysis of gene expression data [J].
Aurora Torrente ;
Sara López-Pintado ;
Juan Romo .
BMC Bioinformatics, 14