A block cipher algorithm identification scheme based on hybrid k-nearest neighbor and random forest algorithm

被引:0
|
作者
Yuan K. [1 ,2 ]
Yu D. [1 ]
Feng J. [3 ]
Yang L. [1 ]
Jia C. [4 ]
Huang Y. [5 ]
机构
[1] School of Computer and Information Engineering, Henan University, Henan, Kaifeng
[2] Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Henan, Kaifeng
[3] International Education College, Henan University, Henan, Zhengzhou
[4] College of Cybersecurity, Nankai University, Tianjin, Tianjin
[5] School of Data Science, Tongren University, Guizhou, Tongren
来源
PeerJ Computer Science | 2022年 / 8卷
基金
中国国家自然科学基金;
关键词
Cryptographic algorithm identification; K-nearest neighbor algorithm; Machine learning; Random forest algorithm; Randomness test;
D O I
10.7717/PEERJ-CS.1110
中图分类号
学科分类号
摘要
Cryptographic algorithm identification, which refers to analyzing and identifying the encryption algorithm used in cryptographic system, is of great significance to cryptanalysis. In order to improve the accuracy of identification work, this article proposes a new ensemble learning-based model named hybrid k-nearest neighbor and random forest (HKNNRF), and constructs a block cipher algorithm identification scheme. In the ciphertext-only scenario, we use NIST randomness test methods to extract ciphertext features, and carry out binary-classification and five-classification experiments on the block cipher algorithms using proposed scheme. Experiments show that when the ciphertext size and other experimental conditions are the same, compared with the baselines, the HKNNRF model has higher classification accuracy. Specifically, the average binary-classification identification accuracy of HKNNRF is 69.5%, which is 13%, 12.5%, and 10% higher than the single-layer support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF) respectively. The five-classification identification accuracy can reach 34%, which is higher than the 21% accuracy of KNN, the 22% accuracy of RF and the 23% accuracy of SVM respectively under the same experimental conditions © Copyright 2022 Baxi et al. Distributed under Creative Commons CC-BY 4.0
引用
收藏
相关论文
共 50 条
  • [1] A block cipher algorithm identification scheme based on hybrid k-nearest neighbor and random forest algorithm
    Yuan, Ke
    Yu, Daoming
    Feng, Jingkai
    Yang, Longwei
    Jia, Chunfu
    Huang, Yiwang
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [2] Random K-nearest neighbor algorithm with learning process
    Fu Z.-L.
    Chen X.-Q.
    Ren W.
    Yao Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (01): : 209 - 220
  • [3] A Block Cipher Algorithm Identification Scheme Based on Hybrid Random Forest and Logistic Regression Model
    Yuan, Ke
    Huang, Yabing
    Li, Jiabao
    Jia, Chunfu
    Yu, Daoming
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3185 - 3203
  • [4] A Block Cipher Algorithm Identification Scheme Based on Hybrid Random Forest and Logistic Regression Model
    Ke Yuan
    Yabing Huang
    Jiabao Li
    Chunfu Jia
    Daoming Yu
    Neural Processing Letters, 2023, 55 : 3185 - 3203
  • [5] Quantum K-nearest neighbor algorithm
    Chen, Hanwu
    Gao, Yue
    Zhang, Jun
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2015, 45 (04): : 647 - 651
  • [6] Hybrid SORN Implementation of k-Nearest Neighbor Algorithm on FPGA
    Huelsmeier, Nils
    Baerthel, Moritz
    Karsthof, Ludwig
    Rust, Jochen
    Paul, Steffen
    2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 163 - 167
  • [7] RACEkNN: A hybrid approach for improving the effectiveness of the k-nearest neighbor algorithm
    Ebrahimi, Mahdiyeh
    Basiri, Alireza
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [8] Improvement of k-nearest neighbor algorithm based on double filtering
    Ma, Chun Jie
    Ding, Zheng Sheng
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1567 - 1570
  • [9] The Spatial Classification Algorithm of K-Nearest Neighbor Based on Spatial Predicate
    Ma Yu
    Gao Yuling
    Song Shaoyun
    MECHATRONICS AND INTELLIGENT MATERIALS III, PTS 1-3, 2013, 706-708 : 1928 - +
  • [10] Magnetorheological damper current estimation based on k-nearest neighbor algorithm
    Lv, Hongzhan
    Zhang, Songsong
    Sun, Qi
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2023, 34 (01) : 111 - 120