A rolling bearing fault diagnosis method based on improved Aquila optimization algorithm to optimize LSTM

被引:0
|
作者
Wang, Yan [1 ]
Wang, Xinfa [1 ]
Wang, Yanfeng [1 ]
Gu, Xiaoguang [2 ]
Sun, Junwei [1 ]
机构
[1] College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou,450000, China
[2] Henan Administrative Affairs Big Data Center, Zhengzhou,450000, China
来源
关键词
Associative storage - Local search (optimization) - Long short-term memory - Optimization algorithms;
D O I
10.13465/j.cnki.jvs.2024.23.017
中图分类号
学科分类号
摘要
Here, aiming at problems of Aquila optimization (AO) algorithm being easy to fall into local optimization and long short-term memory (LSTM) neural network being easily affected by parameters, a model based on improved Aquila optimizer (IAO) algorithm for optimizing LSTM neural network was proposed and applied in fault diagnosis of rolling bearings. Firstly, the hypercube strategy was introduced to optimize the initial quality of a population, and the adaptive spiral strategy was designed to balance the global and local search abilities of AO algorithm. Gaussian mutation strategy was used to enhance the ability of AO algorithm for jumping out from local optimization. Then, the proposed IAO algorithm was used to optimize weights and thresholds of LSTM neural network for constructing a rolling bearing fault diagnosis model based on IAO algorithm-optimized LSTM neural network. Finally, Simulation test results of Case Western Reserve University (CWRU) bearing dataset and Paderborn University (PU) bearing dataset showed that compared with other fault diagnosis models, IAO algorithm-optimized LSTM neural network model has higher Classification accuracy and can effectively identify various fault types of rolling bearings. © 2024 Chinese Vibration Engineering Society. All rights reserved.
引用
收藏
页码:144 / 154
相关论文
共 50 条
  • [31] Bearing Fault Diagnosis Method Based on EEMD and LSTM
    Zou, Ping
    Hou, Baocun
    Jiang, Lei
    Zhang, Zhenji
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (01)
  • [32] Improved capsule network method for rolling bearing fault diagnosis
    Sun Y.
    Peng G.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (01): : 23 - 28
  • [33] Composite fault diagnosis method of rolling bearing based on consistent optimization index
    Zhang L.
    Cai B.
    Xiong G.
    Hu J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (09): : 237 - 245
  • [34] Fault Diagnosis Method of Motor Bearing Based on Improved GAN Algorithm
    Xu L.
    Zheng X.-T.
    Fu B.
    Tian G.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2019, 40 (12): : 1679 - 1684
  • [35] CNN-LSTM method with batch normalization for rolling bearing fault diagnosis
    Shen T.
    Li S.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (12): : 3946 - 3955
  • [36] Rolling Bearing Fault Diagnosis Method Base on Periodic Sparse Attention and LSTM
    An, Yiyao
    Zhang, Ke
    Liu, Qie
    Chai, Yi
    Huang, Xinghua
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12044 - 12053
  • [37] Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network
    Tian, He
    Fan, Huaicong
    Feng, Mingwen
    Cao, Ranran
    Li, Dong
    SENSORS, 2023, 23 (14)
  • [38] An Integrated Method of Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network Optimized by Sparrow Optimization Algorithm
    Dong, Shuyuan
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [39] Research on the seagull optimization algorithm-based convolutional neural network rolling bearing fault diagnosis method
    Xue, Jijun
    Liu, Xiaodong
    Xu, Hao
    Zhang, Di
    ENGINEERING RESEARCH EXPRESS, 2023, 5 (03):
  • [40] Bearing Fault Diagnosis Based on Stochastic Resonance and Improved Whale Optimization Algorithm
    Huang, Weichao
    Zhang, Ganggang
    Jiao, Shangbin
    Wang, Jing
    ELECTRONICS, 2022, 11 (14)