Convolutional Neural Network Design Based on Weak Magnetic Signals and Its Application in Aircraft Bearing Fault Diagnosis

被引:1
|
作者
Ma, Jianpeng [1 ]
Bai, Xiaofeng [2 ]
Ma, Fang [1 ]
Zhuo, Shi [1 ]
Sun, Bojun [1 ]
Li, Chengwei [2 ]
机构
[1] China Harbin Bearing Co Ltd, Aero Engine Corp, Harbin 150500, Peoples R China
[2] Harbin Inst Technol, Sch Instrumentat Sci & Engn, Harbin 150001, Peoples R China
关键词
Aviation bearing; convolutional neural network (CNN) based on weak magnetic signals; fault diagnosis; uniform phase intrinsic time-scale decomposition (UPITD); DECOMPOSITION METHOD;
D O I
10.1109/JSEN.2024.3457027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks (CNNs) have been widely used in bearing fault diagnosis and have achieved promising results. However, due to interference from cage rotation frequency, diagnostic outcomes based on weak magnetic signals and traditional CNNs are often affected. To address this issue, this article proposes a method based on uniform phase intrinsic time-scale decomposition (UPITD). By analyzing the correlation between weak magnetic signals and cage rotation frequency in the time domain, the method effectively separates fault signals from cage rotational signals. In addition, the input size and convolution kernel size in traditional CNNs are typically designed based on empirical values, which may not be optimal. Therefore, this article determines the CNN input size based on the physical characteristics of weak magnetic signals and optimizes the convolution kernel size using the decay rate of exponential function envelopes, further improving diagnostic accuracy. Experimental results show that the proposed method, based on UPITD and CNN, achieves a fault detection accuracy of greater than or equal to 99.34% across various bearing fault types, with a standard deviation of 0.002, which is significantly superior to traditional vibration-based methods. These results demonstrate the superiority and reliability of the proposed approach in bearing fault diagnosis.
引用
收藏
页码:36031 / 36043
页数:13
相关论文
共 50 条
  • [31] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [32] Bearing Fault Diagnosis Using a Vector-Based Convolutional Fuzzy Neural Network
    Lin, Cheng-Jian
    Lin, Chun-Hui
    Lin, Frank
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [33] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [34] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [35] An Analysis Method for Interpretability of Convolutional Neural Network in Bearing Fault Diagnosis
    Guo, Liang
    Gu, Xi
    Yu, Yaoxiang
    Duan, Andongzhe
    Gao, Hongli
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [36] Interpretable quadratic convolutional residual neural network for bearing fault diagnosis
    Luo, Zhiyong
    Pan, Shuping
    Dong, Xin
    Zhang, Xin
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2025, 47 (04)
  • [37] Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis
    Jia, Linshan
    Chow, Tommy W. S.
    Wang, Yu
    Yuan, Yixuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [38] Multiscale Convolutional Neural Network With Feature Alignment for Bearing Fault Diagnosis
    Chen, Junbin
    Huang, Ruyi
    Zhao, Kun
    Wang, Wei
    Liu, Longcan
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [39] Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis
    Daichao Wang
    Qingwen Guo
    Yan Song
    Shengyao Gao
    Yibin Li
    Journal of Signal Processing Systems, 2019, 91 : 1205 - 1217
  • [40] Application of Multiscale Learning Neural Network Based on CNN in Bearing Fault Diagnosis
    Wang, Daichao
    Guo, Qingwen
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (10): : 1205 - 1217