Phase Error Correction in Sparse Linear MIMO Radar Based on the Equivalent Phase Center Principle

被引:0
作者
Shao, Wenyuan [1 ,2 ,3 ]
Hu, Jianmin [1 ,4 ,5 ]
Ji, Yicai [1 ,2 ,3 ]
Pan, Jun [4 ,5 ]
Fang, Guangyou [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Key Lab Electromagnet Radiat & Sensing Technol, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, GBA Branch, Aerosp Informat Res Inst, Guangzhou 510530, Peoples R China
[5] Guangdong Prov Key Lab Terahertz Quantum Electroma, Guangzhou 510530, Peoples R China
基金
中国国家自然科学基金;
关键词
multiple-input multiple-output (MIMO); radar imaging; equivalent phase center (EPC); phase error correction; sparse linear array; TARGET DETECTION;
D O I
10.3390/rs16193685
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Multiple-input multiple-output (MIMO) technology is widely used in the field of radar imaging. Array sparse optimization reduces the hardware cost of MIMO radar, while virtual aperture and the equivalent phase center (EPC) principle simplify the radar signal model and reduce the computation and complexity of imaging algorithms. However, the application of sparse array structure and the EPC principle produces a non-negligible phase error, which affects the imaging quality. This paper simplifies the MIMO radar signal model based on the phase center approximation, analyzes the phase error generated by this method, and proposes an improved phase error correction method to solve the problem that the target cannot be well-focused at non-reference distance during imaging. In addition, this paper designs a sparse linear MIMO array with a periodic structure, which reduces the number of transmitting and receiving units, system complexity, and hardware costs. The proposed phase correction method was combined with the wavenumber domain algorithm to simulate and experiment on the designed antenna array, and good experimental results were obtained to verify the effectiveness of the proposed method.
引用
收藏
页数:23
相关论文
共 26 条
  • [1] Target detection and localization using. MIMO radars and sonars
    Bekkerman, Ilya
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) : 3873 - 3883
  • [2] Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna
    Bellettini, A
    Pinto, MA
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2002, 27 (04) : 780 - 789
  • [3] GMTI MIMO Radar
    Bliss, D. W.
    Forsythe, K. W.
    Davis, S. K.
    Fawcett, G. S.
    Rabideau, D. J.
    Horowitz, L. L.
    Kraut, S.
    [J]. 2009 INTERNATIONAL WAVEFORM DIVERSITY AND DESIGN CONFERENCE, 2009, : 118 - 122
  • [4] Boutte D, 2015, IEEE MILIT COMMUN C, P204, DOI 10.1109/MILCOM.2015.7357443
  • [5] Chen G., 2014, Ph.D. Thesis
  • [6] Cheng H., 2017, Ph.D. dissertation
  • [7] MIMO radar space-time adaptive processing using prolate spheroidal wave functions
    Chun-Yang Chen
    Vaidyanathan, P. P.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (02) : 623 - 635
  • [8] Numerical and Experimental Studies of Target Detection With MIMO Radar
    Frankford, Mark T.
    Stewart, Kyle B.
    Majurec, Ninoslav
    Johnson, Joel T.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2014, 50 (02) : 1569 - 1577
  • [9] MIMO radar with widely separated antennas
    Haimovich, Alexander M.
    Blum, Rick S.
    Cimini, Leonard J., Jr.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 116 - 129
  • [10] Moving Target Parameters Estimation in Noncoherent MIMO Radar Systems
    Hassanien, Aboulnasr
    Vorobyov, Sergiy A.
    Gershman, Alex B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (05) : 2354 - 2361