Boosted gas separation performances of polyimide and thermally rearranged membranes by Fe-doping

被引:6
作者
Li, Pinru [1 ]
Xiao, Guoyong [1 ]
Hou, Mengjie [2 ]
Lu, Yunhua [1 ]
Li, Lin [2 ]
Wang, Tonghua [2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Chem Engn, Anshan 114051, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Chem Engn, Dalian 116024, Liaoning, Peoples R China
关键词
Polyimide; Fe-doping; Composite membrane; Thermal Rearrangement; Gas separation; POLYMER MEMBRANES; DEVELOP;
D O I
10.1016/j.cej.2024.156108
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Herein, p-ferrocenylaniline (CPFEA) is first synthesized from p-nitroaniline and ferrocene as raw materials. Then, a series of Fe-doped rearrangeable polyimide (PI) membranes are prepared by polymerizing 4,4 '-(hexafluoroisopropylidene)dithiocarboxylic anhydride (6FDA) and 2,2 '-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), with CPFEA as an end-capper, followed by thermal imidization and thermal rearrangement (TR) treatment. During the heating process, Fe2+ undergoes a valence state transition, ultimately leading to the coexistence of Fe2+ and Fe3+. The experimental results show that as the CPFEA content increases, the mechanical properties of the Fe-doped PI membranes gradually decrease, but the glass transition temperatures significantly increase due to the chelation of iron ions. In addition, owing to the synergistic effect of Fe2+/Fe3+ on thermal rearrangement reactions and intermolecular interactions, the gas permeabilities and selectivities of the TR composite membranes are greatly improved. Among them, the TR-1.0 %CPFEA sample exhibits the gas permeabilities of 2727, 2442, 407, 107, and 118 Barrer for CO2, H-2, O-2, N-2, and CH4, and the separation performance of CO2/N-2 is close to the 2008 Robeson upper limit, the CO2/CH4 exceeds the 2008 Robeson upper limit. When the thermal treatment temperature reaches 500 degrees C, the gas permeabilities to CO2, H-2, O-2, N-2, and CH4 are respectively boosted to 30591, 13146, 5958, 1714, and 1882 Barrer, and the CO2/CH4 separation performance exceeds the 2019 upper limit. Therefore, this work proposes a feasible method to boost the gas separation performance by end-capping PI backbones with CPFEA, and the Fe-doped TR composite membranes are expected to play a certain role in the environmental and industrial fields.
引用
收藏
页数:13
相关论文
共 60 条
[1]   Computational Investigation of Dual Filler-Incorporated Polymer Membranes for Efficient CO2 and H2 Separation: MOF/COF/Polymer Mixed Matrix Membranes [J].
Aydin, Sena ;
Altintas, Cigdem ;
Erucar, Ilknur ;
Keskin, Seda .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (06) :2924-2936
[2]   Breaking the Permeability-Selectivity Trade-Off: Advanced carbon molecular sieve membranes derived from thermally rearranged Mixed-Matrix membrane precursors [J].
Cai, Mingwei ;
Liu, Heng ;
Chen, Jiongcai ;
Sun, Luxin ;
Wu, Jiahao ;
Chen, Zhiyin ;
Han, Zhenjing ;
Cui, Tingting ;
Zhang, Shiyang ;
Min, Yonggang ;
Ma, Xiaohua .
SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 335
[3]   Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO2 Separation Membranes [J].
Chen, Binghong ;
Xie, Hongli ;
Shen, Liguo ;
Xu, Yanchao ;
Zhang, Meijia ;
Zhou, Mingzhu ;
Li, Bisheng ;
Li, Renjie ;
Lin, Hongjun .
SMALL, 2023, 19 (17)
[4]   Preparation and gas separation properties of spirobisbenzoxazole-based polyimides [J].
Chen, Haiquan ;
Dai, Fengna ;
Wang, Mengxia ;
Yan, Xiaoying ;
Ke, Zhao ;
Chen, Chunhai ;
Qian, Guangtao ;
Yu, Youhai .
EUROPEAN POLYMER JOURNAL, 2022, 173
[5]   Fabrication of high-performance poly(benzoxazole-co-imide) membrane by utilizing synergistic effect of thermal rearrangement and Zn2+modification [J].
Chen, Min ;
Luo, Jiangzhou ;
Ling, Honglei ;
Zong, Xueping ;
Xue, Song .
JOURNAL OF MEMBRANE SCIENCE, 2023, 688
[6]   Using iron (III) acetylacetonate as both a cross-linker and micropore former to develop polyimide membranes with enhanced gas separation performance [J].
Chua, Mei Ling ;
Xiao, Youchang ;
Chung, Tai-Shung .
SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 133 :120-128
[7]   Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity [J].
Comesana-Gandara, Bibiana ;
Chen, Jie ;
Bezzu, C. Grazia ;
Carta, Mariolino ;
Rose, Ian ;
Ferrari, Maria-Chiara ;
Esposito, Elisa ;
Fuoco, Alessio ;
Jansen, Johannes C. ;
McKeown, Neil B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2733-2740
[8]   Carbon molecular-sieve membranes developed from a Troger's base polymer and possessing superior gas-separation performance [J].
Dai, Zhongde ;
Guo, Hongfang ;
Deng, Jing ;
Deng, Liyuan ;
Yan, Jiaqi ;
Spontak, Richard J. .
JOURNAL OF MEMBRANE SCIENCE, 2023, 680
[9]   Molecular membrane separation: plants inspire new technologies [J].
De Rosa, Annamaria ;
McGaughey, Samantha ;
Magrath, Isobel ;
Byrt, Caitlin .
NEW PHYTOLOGIST, 2023, 238 (01) :33-54
[10]   Hollow SAPO-34 incorporated mixed matrix membranes with the improved solubility selectivity and permeability for N2/CH4 separation [J].
Ding, Xiaoli ;
Tang, Yongfu ;
Zhao, Hongyong ;
Xin, Qingping ;
Zhang, Yuzhong .
MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 341