An off-lattice discrete model to characterise filamentous yeast colony morphology

被引:0
|
作者
Li, Kai [1 ]
Green, J. Edward F. [1 ]
Tronnolone, Hayden [2 ]
Tam, Alexander K. Y. [3 ]
Black, Andrew J. [1 ]
Gardner, Jennifer M. [4 ]
Sundstrom, Joanna F. [4 ]
Jiranek, Vladimir [4 ,5 ]
Binder, Benjamin J. [1 ]
机构
[1] Univ Adelaide, Sch Comp & Math Sci, Adelaide, SA, Australia
[2] Flinders Univ S Australia, Coll Sci & Engn, Adelaide SA, Adelaide, SA, Australia
[3] Univ South Australia, UniSA STEM, Mawson Lakes, SA, Australia
[4] Univ Adelaide, Discipline Wine Sci, Waite Campus, Urrbrae, SA, Australia
[5] Univ Southampton, Sch Biol Sci, Southampton, England
基金
澳大利亚研究理事会;
关键词
CHAIN MONTE-CARLO; CELL MORPHOLOGY; SACCHAROMYCES-CEREVISIAE; GROWTH;
D O I
10.1371/journal.pcbi.1012605
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
引用
收藏
页数:20
相关论文
共 1 条