Complete feature learning and consistent relation modeling for few-shot knowledge graph completion

被引:0
|
作者
Liu, Jin [1 ]
Fan, ChongFeng [1 ]
Zhou, Fengyu [1 ]
Xu, Huijuan [2 ]
机构
[1] Shandong University, JiNan, China
[2] Pennsylvania State University, Philadelphia, United States
关键词
Graph embeddings - Machine learning - Semantics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot knowledge graph completion focuses on predicting unseen facts of long-tail relations in knowledge graphs with only few reference sets. The key challenge for tackling this task is how to represent the complete entity features under low data regime conditions and further build the relation scoring function of the triplet for prediction. However, existing works mainly focus on aggregating entity representations and seriously ignore the process of consistent relation modeling, resulting in unsatisfactory performance on sparse neighbors and complex relations modeling. To address the issues, this paper designs a two-branch feature extractor to capture complementary and complete representation of entities for differentiating the few examples, where each branch focuses on diverse aspect of the entity features. Furthermore, we apply a diversity loss based on the minimization of cosine similarity is applied between the two-branch feature extractors to encourage the two-branch to learn complementary features. Conditioned on the entity features, we further incorporate the structural relation representation into the semantic relation learning to keep the consistent with triplet scoring function, and consider the consistency issue of various structural relation modeling between training and test generalization. Empirical results on two public benchmark datasets NELL-One and Wiki-One demonstrate that our approach outperforms the state-of-the-art results, with relative improvements on Hits@10 for 1-shot of 4.8% and 4.4%, respectively, and achieves new state-of-the-art results. Additionally, Extensive experiments also show proficiency in dealing with complex relations and sparse neighbors. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Relation-Aware Network with Attention-Based Loss for Few-Shot Knowledge Graph Completion
    Qiao, Qiao
    Li, Yuepei
    Kang, Li
    Li, Qi
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT III, 2023, 13937 : 99 - 111
  • [32] Combat data shift in few-shot learning with knowledge graph
    Zhu, Yongchun
    Zhuang, Fuzhen
    Zhang, Xiangliang
    Qi, Zhiyuan
    Shi, Zhiping
    Cao, Juan
    He, Qing
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (01)
  • [33] Few-Shot Knowledge Graph Completion Combined with Type-Aware Attention
    Pu X.
    Wang H.
    Xian Y.
    Data Analysis and Knowledge Discovery, 2023, 7 (09) : 51 - 63
  • [34] A Few-Shot Knowledge Graph Completion Model With Neighbor Filter and Affine Attention
    Gong, Hongfang
    Ding, Yingjing
    Ma, Minyi
    IEEE ACCESS, 2025, 13 : 12308 - 12320
  • [35] Few-Shot Knowledge Graph Completion With Star and Ring Topology Information Aggregation
    Zhao, Jing
    Zhang, Xinzhu
    Li, Yujia
    Sun, Shiliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2525 - 2537
  • [36] BayesKGR: Bayesian Few-Shot Learning for Knowledge Graph Reasoning
    Zhao, Feng
    Yan, Cheng
    Jin, Hai
    He, Lifang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (06)
  • [37] Few-Shot Knowledge Graph Completion Based on Subgraph Structure Semantic Enhancement
    Yang, Rongtai
    Shao, Yubin
    Du, Qingzhi
    Long, Hua
    Ma, Dinan
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (04): : 71 - 76
  • [38] Combat data shift in few-shot learning with knowledge graph
    Yongchun Zhu
    Fuzhen Zhuang
    Xiangliang Zhang
    Zhiyuan Qi
    Zhiping Shi
    Juan Cao
    Qing He
    Frontiers of Computer Science, 2023, 17
  • [39] Few-shot temporal knowledge graph completion based on meta-optimization
    Zhu, Lin
    Bai, Luyi
    Han, Shuo
    Zhang, Mingcheng
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (6) : 7461 - 7474
  • [40] Few-shot temporal knowledge graph completion based on meta-optimization
    Lin Zhu
    Luyi Bai
    Shuo Han
    Mingcheng Zhang
    Complex & Intelligent Systems, 2023, 9 : 7461 - 7474