Complete feature learning and consistent relation modeling for few-shot knowledge graph completion

被引:0
|
作者
Liu, Jin [1 ]
Fan, ChongFeng [1 ]
Zhou, Fengyu [1 ]
Xu, Huijuan [2 ]
机构
[1] Shandong University, JiNan, China
[2] Pennsylvania State University, Philadelphia, United States
关键词
Graph embeddings - Machine learning - Semantics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot knowledge graph completion focuses on predicting unseen facts of long-tail relations in knowledge graphs with only few reference sets. The key challenge for tackling this task is how to represent the complete entity features under low data regime conditions and further build the relation scoring function of the triplet for prediction. However, existing works mainly focus on aggregating entity representations and seriously ignore the process of consistent relation modeling, resulting in unsatisfactory performance on sparse neighbors and complex relations modeling. To address the issues, this paper designs a two-branch feature extractor to capture complementary and complete representation of entities for differentiating the few examples, where each branch focuses on diverse aspect of the entity features. Furthermore, we apply a diversity loss based on the minimization of cosine similarity is applied between the two-branch feature extractors to encourage the two-branch to learn complementary features. Conditioned on the entity features, we further incorporate the structural relation representation into the semantic relation learning to keep the consistent with triplet scoring function, and consider the consistency issue of various structural relation modeling between training and test generalization. Empirical results on two public benchmark datasets NELL-One and Wiki-One demonstrate that our approach outperforms the state-of-the-art results, with relative improvements on Hits@10 for 1-shot of 4.8% and 4.4%, respectively, and achieves new state-of-the-art results. Additionally, Extensive experiments also show proficiency in dealing with complex relations and sparse neighbors. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] TransAM: Transformer appending matcher for few-shot knowledge graph completion
    Liang, Yi
    Zhao, Shuai
    Cheng, Bo
    Yang, Hao
    NEUROCOMPUTING, 2023, 537 : 61 - 72
  • [22] Implicit relational attention network for few-shot knowledge graph completion
    Yang, Xu-Hua
    Li, Qi-Yao
    Wei, Dong
    Long, Hai-Xia
    APPLIED INTELLIGENCE, 2024, 54 (08) : 6433 - 6443
  • [23] REFORM: Error-Aware Few-Shot Knowledge Graph Completion
    Wang, Song
    Huang, Xiao
    Chen, Chen
    Wu, Liang
    Li, Jundong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1979 - 1988
  • [24] Incorporating Prior Type Information for Few-Shot Knowledge Graph Completion
    Yao, Siyu
    Zhao, Tianzhe
    Xu, Fangzhi
    Liu, Jun
    WEB AND BIG DATA, PT II, APWEB-WAIM 2022, 2023, 13422 : 271 - 285
  • [25] Relational Learning with Hierarchical Attention Encoder and Recoding Validator for Few-Shot Knowledge Graph Completion
    Yuan, Xu
    Xu, Chengchuan
    Li, Peng
    Chen, Zhikui
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 786 - 794
  • [26] Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion
    Bai, Luyi
    Han, Shuo
    Zhu, Lin
    NEURAL NETWORKS, 2025, 183
  • [27] Consistent Prototype Learning for Few-Shot Continual Relation Extraction
    Chen, Xiudi
    Wu, Hui
    Shi, Xiaodong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 7409 - 7422
  • [28] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [29] Dealing with Over-Reliance on Background Graph for Few-Shot Knowledge Graph Completion
    Yang, Ruiyin
    Wei, Xiao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 263 - 275
  • [30] Local feature graph neural network for few-shot learning
    Weng P.
    Dong S.
    Ren L.
    Zou K.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 4343 - 4354