Multi-layered knowledge graph neural network reveals pathway-level agreement of three breast cancer multi-gene assays

被引:0
作者
Lee, Sangseon [1 ]
Park, Joonhyeong [1 ]
Piao, Yinhua [2 ]
Lee, Dohoon [3 ,4 ]
Lee, Danyeong [5 ]
Kim, Sun [2 ,5 ,6 ,7 ]
机构
[1] Inst Comp Technol, Seoul, South Korea
[2] Dept Comp Sci & Engn, Dept Mat Sci & Engn, Seoul, South Korea
[3] Bioinformat Inst, Daejeon, South Korea
[4] BK21 FOUR Intelligence Comp, BK21 FOUR Intelligence Comp, Seoul, South Korea
[5] Interdisciplinary Program Bioinformat, Seoul, South Korea
[6] Seoul Natl Univ, Interdisciplinary Program Artificial Intelligence, Gwanak Ro 1, Seoul 08826, South Korea
[7] AIGENDRUG Co Ltd, Gwanak ro 1, Seoul 08826, South Korea
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2024年 / 23卷
关键词
Knowledge graph; Multi-gene assay; Breast cancer recurrence; Graph neural network; Regulatory landscape; CELL-PROLIFERATION; OVEREXPRESSION; IDENTIFICATION; RECURRENCE; ACTIVATION; PREDICTOR;
D O I
10.1016/j.csbj.2024.04.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multi-gene assays have been widely used to predict the recurrence risk for hormone receptor (HR)-positive breast cancer patients. However, these assays lack explanatory power regarding the underlying mechanisms of the recurrence risk. To address this limitation, we proposed a novel multi-layered knowledge graph neural network for the multi-gene assays. Our model elucidated the regulatory pathways of assay genes and utilized an attention- based graph neural network to predict recurrence risk while interpreting transcriptional subpathways relevant to risk prediction. Evaluation on three multi-gene assays-Oncotype DX, Prosigna, and EndoPredict-using SCAN-B dataset demonstrated the efficacy of our method. Through interpretation of attention weights, we found that all three assays are mainly regulated by signaling pathways driving cancer proliferation especially RTK-ERK-ETSmediated cell proliferation for breast cancer recurrence. In addition, our analysis highlighted that the important regulatory subpathways remain consistent across different knowledgebases used for constructing the multi-level knowledge graph. Furthermore, through attention analysis, we demonstrated the biological significance and clinical relevance of these subpathways in predicting patient outcomes. The source code is available at http:// biohealth.snu.ac.kr /software /ExplainableMLKGNN.
引用
收藏
页码:1715 / 1724
页数:10
相关论文
共 45 条
  • [1] WikiPathways 2024: next generation pathway database
    Agrawal, Ayushi
    Balci, Hasan
    Hanspers, Kristina
    Coort, Susan L.
    Martens, Marvin
    Slenter, Denise N.
    Ehrhart, Friederike
    Digles, Daniela
    Waagmeester, Andra
    Wassink, Isabel
    Abbassi-Daloii, Tooba
    Lopes, Elisson N.
    Iyer, Aishwarya
    Acosta, Javier Millan
    Willighagen, Lars G.
    Nishida, Kozo
    Riutta, Anders
    Basaric, Helena
    Evelo, Chris T.
    Willighagen, Egon L.
    Kutmon, Martina
    Pico, Alexander R.
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 52 (D1) : D679 - D689
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    Barbie, David A.
    Tamayo, Pablo
    Boehm, Jesse S.
    Kim, So Young
    Moody, Susan E.
    Dunn, Ian F.
    Schinzel, Anna C.
    Sandy, Peter
    Meylan, Etienne
    Scholl, Claudia
    Froehling, Stefan
    Chan, Edmond M.
    Sos, Martin L.
    Michel, Kathrin
    Mermel, Craig
    Silver, Serena J.
    Weir, Barbara A.
    Reiling, Jan H.
    Sheng, Qing
    Gupta, Piyush B.
    Wadlow, Raymond C.
    Le, Hanh
    Hoersch, Sebastian
    Wittner, Ben S.
    Ramaswamy, Sridhar
    Livingston, David M.
    Sabatini, David M.
    Meyerson, Matthew
    Thomas, Roman K.
    Lander, Eric S.
    Mesirov, Jill P.
    Root, David E.
    Gilliland, D. Gary
    Jacks, Tyler
    Hahn, William C.
    [J]. NATURE, 2009, 462 (7269) : 108 - U122
  • [4] Signaling pathways in breast cancer metastasis - novel insights from functional genomics
    Blanco, Mario Andres
    Kang, Yibin
    [J]. BREAST CANCER RESEARCH, 2011, 13 (02): : 206
  • [5] Translating RNA sequencing into clinical diagnostics: opportunities and challenges
    Byron, Sara A.
    Van Keuren-Jensen, Kendall R.
    Engelthaler, David M.
    Carpten, John D.
    Craig, David W.
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (05) : 257 - 271
  • [6] Overexpression of Sp1 transcription factor induces apoptosis
    Deniaud, E.
    Baguet, J.
    Mathieu, A-L
    Pages, G.
    Marvel, J.
    Leverrier, Y.
    [J]. ONCOGENE, 2006, 25 (53) : 7096 - 7105
  • [7] Dhamdhere K, 2018, INT C LEARN REPR
  • [8] Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis
    Eckert, LB
    Repasky, GA
    Ülkü, AS
    McFall, A
    Zhou, H
    Sartor, CI
    Der, CJ
    [J]. CANCER RESEARCH, 2004, 64 (13) : 4585 - 4592
  • [9] Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer
    Fang, Yifeng
    Yu, Hong
    Liang, Xiao
    Xu, Junfen
    Cai, Xiujun
    [J]. CANCER BIOLOGY & THERAPY, 2014, 15 (09) : 1268 - 1279
  • [10] Molecular principles of metastasis: a hallmark of cancer revisited
    Fares, Jawad
    Fares, Mohamad Y.
    Khachfe, Hussein H.
    Salhab, Hamza A.
    Fares, Youssef
    [J]. SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)