MAC: Masked Contrastive Pre-Training for Efficient Video-Text Retrieval

被引:1
作者
Shu, Fangxun [1 ]
Chen, Biaolong [1 ]
Liao, Yue [2 ]
Wang, Jinqiao [3 ,4 ]
Liu, Si [2 ]
机构
[1] Alibaba Grp, Beijing 100020, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Redundancy; Computational modeling; Visualization; Training; Semantics; Feature extraction; Contrastive learning; end-to-end pretraining; masked modeling; video-text retrieval;
D O I
10.1109/TMM.2024.3402613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a simple yet effective end-to-end Video-language Pre-training (VidLP) framework, Masked Contrastive Video-language Pre-training (MAC), for video-text retrieval tasks. Our MAC aims to reduce video representation's spatial and temporal redundancy in the VidLP model by a mask sampling mechanism to improve pre-training efficiency. Comparing conventional temporal sparse sampling, we propose to randomly mask a high ratio of spatial regions and only take visible regions into the encoder as sparse spatial sampling. Similarly, we adopt the mask sampling technique for text inputs for consistency. Instead of blindly applying the mask-then-prediction paradigm from MAE, we propose a masked-then-alignment paradigm for efficient video-text alignment. The motivation is that video-text retrieval tasks rely on high-level alignment rather than low-level reconstruction, and multimodal alignment with masked modeling encourages the model to learn a robust and general multimodal representation from incomplete and unstable inputs. Coupling these designs enables efficient end-to-end pre-training: 3x speed up, 60%+ computation reduction, and 4%+ performance improvement. Our MAC achieves state-of-the-art results on various video-text retrieval datasets including MSR-VTT, DiDeMo, and ActivityNet. Our approach is omnivorous to input modalities. With minimal modifications, we achieve competitive results on image-text retrieval tasks.
引用
收藏
页码:9962 / 9972
页数:11
相关论文
共 82 条
[1]  
[Anonymous], 2011, P 49 ANN M ASS COMPU
[2]   ViViT: A Video Vision Transformer [J].
Arnab, Anurag ;
Dehghani, Mostafa ;
Heigold, Georg ;
Sun, Chen ;
Lucic, Mario ;
Schmid, Cordelia .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6816-6826
[3]   MultiMAE: Multi-modal Multi-task Masked Autoencoders [J].
Bachmann, Roman ;
Mizrahi, David ;
Atanov, Andrei ;
Zamir, Amir .
COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 :348-367
[4]   Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval [J].
Bain, Max ;
Nagrani, Arsha ;
Varol, Gul ;
Zisserman, Andrew .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :1708-1718
[5]  
Bao H., 2022, P INT C LEARN REPR
[6]  
Bao HB, 2022, Arxiv, DOI arXiv:2206.01127
[7]  
Bertasius G, 2021, PR MACH LEARN RES, V139
[8]  
Heilbron FC, 2015, PROC CVPR IEEE, P961, DOI 10.1109/CVPR.2015.7298698
[9]   Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning [J].
Chen, Shizhe ;
Zhao, Yida ;
Jin, Qin ;
Wu, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :10635-10644
[10]   UNITER: UNiversal Image-TExt Representation Learning [J].
Chen, Yen-Chun ;
Li, Linjie ;
Yu, Licheng ;
El Kholy, Ahmed ;
Ahmed, Faisal ;
Gan, Zhe ;
Cheng, Yu ;
Liu, Jingjing .
COMPUTER VISION - ECCV 2020, PT XXX, 2020, 12375 :104-120