Geometric Frustration Directs the Self-assembly of Nanoparticles with Crystallized Ligand Bundles

被引:0
|
作者
Tomazic, Federico [1 ]
Muttathukattil, Aswathy [1 ]
Nabiyan, Afshin [2 ,3 ,4 ]
Schacher, Felix [2 ,3 ,4 ,5 ]
Engel, Michael [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Multiscale Simulat, D-91058 Erlangen, Germany
[2] Friedrich Schiller Univ Jena, Jena Ctr Soft Matter, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Inst Organ Chem & Macromol Chem, D-07743 Jena, Germany
[4] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem, D-07743 Jena, Germany
[5] Helmholtz Inst Polymers Energy Applicat Jena HIPOL, D-07743 Jena, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 45期
关键词
MOLECULAR-DYNAMICS SIMULATIONS; HELICAL STRUCTURES; LOCAL-STRUCTURE; AMPHIPHILE; SURFACTANT; SHAPE;
D O I
10.1021/acs.jpcb.4c04562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-grafted nanoparticles are versatile building blocks that self-assemble into a diverse range of mesostructures. Coarse-grained molecular simulations have commonly accompanied experiments by resolving structure formation pathways and predicting phase behavior. Past simulations represented nanoparticles as spheres and the ligands as flexible chains of beads, isotropically tethered to the nanoparticles. Here, we investigate a different minimal coarse-grained model. The model consists of an attractive rod tethered to a repulsive sphere. The motivation of this rod-sphere model is to describe nanospheres with a partially crystallized, stretched polymeric bundle as well as other complex building blocks such as rigid surfactants and end-tethered nanorods. Varying the ratio of sphere size to rod radius stabilizes self-limited clusters and other mesostructures with reduced dimensionality. The complex phase behavior we observe is a consequence of geometric frustration.
引用
收藏
页码:11258 / 11266
页数:9
相关论文
共 50 条
  • [41] Self-assembly of FePt nanoparticles into nanorings
    Zhou, WL
    He, JB
    Fang, JY
    Huynh, TA
    Kennedy, TJ
    Stokes, KL
    O'Connor, CJ
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 7340 - 7342
  • [42] In Situ Self-Assembly of Silver Nanoparticles
    Bokhonov, Boris B.
    Sharafutdinov, Marat R.
    Whitcomb, David R.
    Burleva, Lilia P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (22): : 11980 - 11989
  • [43] Synthesis, self-assembly and bioconjugation of nanoparticles
    Weller, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U311 - U311
  • [44] Molecular self-assembly in the presence of nanoparticles
    Wang, Ruomiao
    Arachchige, Indika U.
    Brock, Stephanie L.
    Mao, Guangzhao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [45] Synthesis and self-assembly of colloidal nanoparticles
    Weller, H
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 229 - 239
  • [46] Biocatalytic Self-Assembly on Magnetic Nanoparticles
    Conte, Maria P.
    Sahoo, Jugal Kishore
    Abul-Haija, Yousef M.
    Lau, K. H. Aaron
    Ulijn, Rein V.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) : 3069 - 3075
  • [47] Nanolithographic self-assembly of colloidal nanoparticles
    Moshnikov, V. A.
    Maksimov, A. I.
    Aleksandrova, O. A.
    Pronin, I. A.
    Karmanov, A. A.
    Terukov, E. I.
    Yakushova, N. D.
    Averin, I. A.
    Bobkov, A. A.
    Permyakov, N. V.
    TECHNICAL PHYSICS LETTERS, 2016, 42 (09) : 967 - 969
  • [48] Photocontrolled self-assembly of silica nanoparticles
    Peng, Chang
    Zeng, Tianqin
    Yu, Yong
    Li, Zefan
    Zuo, Jiangtao
    Kuai, Zeyuan
    Jin, Yang
    Wang, Yehe
    Li, Ling
    CERAMICS INTERNATIONAL, 2019, 45 (07) : 9320 - 9324
  • [49] Self-assembly of FePt nanoparticles into nanorings
    Zhou, W.L. (wzhou@uno.edu), 1600, American Institute of Physics Inc. (93):
  • [50] Self-assembly of nanoparticles Static and dynamic
    Wang, Ben
    Zhang, Yabin
    Guo, Zhiguang
    Zhang, Li
    MATERIALS TODAY, 2019, 25 : 112 - 113