Geometric Frustration Directs the Self-assembly of Nanoparticles with Crystallized Ligand Bundles

被引:0
|
作者
Tomazic, Federico [1 ]
Muttathukattil, Aswathy [1 ]
Nabiyan, Afshin [2 ,3 ,4 ]
Schacher, Felix [2 ,3 ,4 ,5 ]
Engel, Michael [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Multiscale Simulat, D-91058 Erlangen, Germany
[2] Friedrich Schiller Univ Jena, Jena Ctr Soft Matter, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Inst Organ Chem & Macromol Chem, D-07743 Jena, Germany
[4] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem, D-07743 Jena, Germany
[5] Helmholtz Inst Polymers Energy Applicat Jena HIPOL, D-07743 Jena, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 45期
关键词
MOLECULAR-DYNAMICS SIMULATIONS; HELICAL STRUCTURES; LOCAL-STRUCTURE; AMPHIPHILE; SURFACTANT; SHAPE;
D O I
10.1021/acs.jpcb.4c04562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-grafted nanoparticles are versatile building blocks that self-assemble into a diverse range of mesostructures. Coarse-grained molecular simulations have commonly accompanied experiments by resolving structure formation pathways and predicting phase behavior. Past simulations represented nanoparticles as spheres and the ligands as flexible chains of beads, isotropically tethered to the nanoparticles. Here, we investigate a different minimal coarse-grained model. The model consists of an attractive rod tethered to a repulsive sphere. The motivation of this rod-sphere model is to describe nanospheres with a partially crystallized, stretched polymeric bundle as well as other complex building blocks such as rigid surfactants and end-tethered nanorods. Varying the ratio of sphere size to rod radius stabilizes self-limited clusters and other mesostructures with reduced dimensionality. The complex phase behavior we observe is a consequence of geometric frustration.
引用
收藏
页码:11258 / 11266
页数:9
相关论文
共 50 条
  • [31] Geometrical principles of the self-assembly of nanoparticles
    Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, nab. Makarova 2, St. Petersburg, 199034, Russia
    不详
    Glass Phys. Chem., 2008, 1 (1-8):
  • [32] Self-assembly of superparamagnetic ferrihydrite nanoparticles
    Yu. L. Gurevich
    Yu. I. Mankov
    R. G. Khlebopros
    Doklady Physics, 2013, 58 : 478 - 481
  • [33] Seeding Nanoparticles for Hierarchical Self-Assembly
    Wang, Yu
    Chen, Lu
    Zhong, Wei-Hong Katie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06): : 3560 - 3566
  • [34] Self-assembly of charged CdTe nanoparticles
    Voylov, D. N.
    Nikolenko, L. M.
    Nikolenko, D. Yu
    Voylova, N. A.
    Olsen, E. M.
    Razumov, V. F.
    JETP LETTERS, 2012, 95 (12) : 656 - 661
  • [35] Synthesis and self-assembly of magnetoplasmonic nanoparticles
    Lu, Derong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [36] Self-assembly of charged CdTe nanoparticles
    D. N. Voylov
    L. M. Nikolenko
    D. Yu. Nikolenko
    N. A. Voylova
    E. M. Olsen
    V. F. Razumov
    JETP Letters, 2012, 95 : 656 - 661
  • [37] Self-Assembly of Lithographically Patterned Nanoparticles
    Cho, Jeong-Hyun
    Gracias, David H.
    NANO LETTERS, 2009, 9 (12) : 4049 - 4052
  • [38] Self-assembly PbSe nanoparticles into nanorings
    Zhou, WL
    He, JB
    Fang, JY
    Huynh, TA
    Kennedy, TJ
    Stokes, KL
    O'Connor, CJ
    SELF-ASSEMBLED NANOSTRUCTURED MATERIALS, 2003, 775 : 369 - 373
  • [39] Synthesis and self-assembly of magnetic nanoparticles
    Shukla, Nisha
    Nigra, Michael M.
    SURFACE SCIENCE, 2007, 601 (13) : 2615 - 2617
  • [40] Nanolithographic self-assembly of colloidal nanoparticles
    V. A. Moshnikov
    A. I. Maksimov
    O. A. Aleksandrova
    I. A. Pronin
    A. A. Karmanov
    E. I. Terukov
    N. D. Yakushova
    I. A. Averin
    A. A. Bobkov
    N. V. Permyakov
    Technical Physics Letters, 2016, 42 : 967 - 969