Geometric Frustration Directs the Self-assembly of Nanoparticles with Crystallized Ligand Bundles

被引:0
|
作者
Tomazic, Federico [1 ]
Muttathukattil, Aswathy [1 ]
Nabiyan, Afshin [2 ,3 ,4 ]
Schacher, Felix [2 ,3 ,4 ,5 ]
Engel, Michael [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Multiscale Simulat, D-91058 Erlangen, Germany
[2] Friedrich Schiller Univ Jena, Jena Ctr Soft Matter, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Inst Organ Chem & Macromol Chem, D-07743 Jena, Germany
[4] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem, D-07743 Jena, Germany
[5] Helmholtz Inst Polymers Energy Applicat Jena HIPOL, D-07743 Jena, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2024年 / 128卷 / 45期
关键词
MOLECULAR-DYNAMICS SIMULATIONS; HELICAL STRUCTURES; LOCAL-STRUCTURE; AMPHIPHILE; SURFACTANT; SHAPE;
D O I
10.1021/acs.jpcb.4c04562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-grafted nanoparticles are versatile building blocks that self-assemble into a diverse range of mesostructures. Coarse-grained molecular simulations have commonly accompanied experiments by resolving structure formation pathways and predicting phase behavior. Past simulations represented nanoparticles as spheres and the ligands as flexible chains of beads, isotropically tethered to the nanoparticles. Here, we investigate a different minimal coarse-grained model. The model consists of an attractive rod tethered to a repulsive sphere. The motivation of this rod-sphere model is to describe nanospheres with a partially crystallized, stretched polymeric bundle as well as other complex building blocks such as rigid surfactants and end-tethered nanorods. Varying the ratio of sphere size to rod radius stabilizes self-limited clusters and other mesostructures with reduced dimensionality. The complex phase behavior we observe is a consequence of geometric frustration.
引用
收藏
页码:11258 / 11266
页数:9
相关论文
共 50 条
  • [1] Adaptive Self-Assembly in 2D Nanoconfined Spaces: Dealing with Geometric Frustration
    Verstraete, Lander
    Szabelski, Pawel
    Braganca, Ana M.
    Hirsch, Brandon E.
    De Feyter, Steven
    CHEMISTRY OF MATERIALS, 2019, 31 (17) : 6779 - 6786
  • [2] Self-assembly of CdS: from nanoparticles to nanorods and arrayed nanorod bundles
    Zhang, H
    Yang, DR
    Ma, XY
    Ji, YJ
    Li, SZ
    Que, DL
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (01) : 65 - 69
  • [3] Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles
    Walker, David A.
    Leitsch, Emily K.
    Nap, Rikkert J.
    Szleifer, Igal
    Grzybowski, Bartosz A.
    NATURE NANOTECHNOLOGY, 2013, 8 (09) : 676 - 681
  • [4] Self-assembly with Geometric Tiles
    Fu, Bin
    Patitz, Matthew J.
    Schweller, Robert T.
    Sheline, Robert
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 714 - 725
  • [5] Self-assembly and controlled assembly of nanoparticles
    Dillenback, Lisa M.
    Yake, Allison
    Triplett, Derek
    Velegol, Darrell
    Fichthorn, Kristen A.
    Keating, Christine D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [6] Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes
    Angelikopoulos, Panagiotis
    Sarkisov, Lev
    Cournia, Zoe
    Gkeka, Paraskevi
    NANOSCALE, 2017, 9 (03) : 1040 - 1048
  • [7] Regulating self-assembly of oligonucleotide on gold nanoparticles by ligand-exchange
    Yang Xiao-Chao
    Mo Zhi-Hong
    Qian Jun-Zhen
    Guo Kun-Peng
    Wang Guan-Yao
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2007, 35 (08) : 1199 - 1202
  • [8] Stabilization of ultrathin nanowires by self-assembly into bundles
    Bettscheider, Simon
    Kraus, Tobias
    Fleck, Norman A.
    ACTA MATERIALIA, 2022, 231
  • [9] Geometrical frustration yields fibre formation in self-assembly
    Lenz, Martin
    Witten, Thomas A.
    NATURE PHYSICS, 2017, 13 (11) : 1100 - +
  • [10] Geometrical frustration yields fibre formation in self-assembly
    Martin Lenz
    Thomas A. Witten
    Nature Physics, 2017, 13 : 1100 - 1104